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Abstract—In this White Paper, we describe Blockchain Genesis
(further Blockchain), the blockchain solution based on a public
permissioned model and supporting Turing-complete smart con-
tracts. Blockchain was created based on the impulse of XIXOIO
as one of the building blocks of the Crypto Banking Ecosys-
tem, which, among other things, provides the IPCO process.
Blockchain is based on Hyperledger Besu but in contrast to its
vanilla flavor, Blockchain introduces a novel monetary policy
model that regulates the block reward according to the current
circulating supply.

Blockchain also contains its dedicated means for decentralized
identity management, enabling any smart contract to perform
KYC checks upon its discretion. Next, Blockchain contains a
reputation system for assessment of validators, which comes into
play when the set of validators needs to be modified – therefore,
we motivate the validators to behave honestly and provide high
availability of their blockchain-related services. Blockchain is
intended to promote the adoption of decentralized applications
in the region of the Czech Republic.

I. INTRODUCTION

The popularity of blockchain systems has rapidly increased
in the last decade, mainly due to the decentralization of
control, immutability, and other features that blockchains
provide. Cryptocurrency is the first practical application of
blockchains, mostly known due to its first public permission-
less deployment, Bitcoin [1]. In such a model, anyone can
participate without revealing their identity, and potentially earn
crypto-tokens by solving a Proof-of-Work (PoW) challenge
using a dedicated mining hardware. Since the introduction of
Bitcoin, many practical decentralized use cases have emerged,
such as asset tokenization, auctions, identity management,
notaries, elections, etc. Nevertheless, such use cases require
decentralized execution platforms supporting Turing-complete
smart contract languages.

Ethereum [2] is the first public smart contract platform
capable of handling decentralized applications. Unfortunately,
the original idea of an arbitrary code execution in Ethereum
became very limited due to low transaction throughput and
high processing costs of Ethereum, which is unacceptable for
many practical use cases that became prohibitively expen-
sive and still not receive required finality. As a result, the
permissioned blockchains based on Byzantine Fault Tolerant
(BFT) consensus protocols started to gain adoption. In such
permissioned blockchains, e.g., Hyperledger [3], only a limited
number of known verified participants is operating, while

these blockchains can provide high transaction throughput and
almost immediate block finality.

A. Contributions

To promote the adoption of various blockchain-based ap-
plications in the Czech Republic, we have built Blockchain,
which is a public permissioned ledger with a Turing-complete
smart contract platform. The main aspect of Blockchain is its
high transaction throughput, (almost) immediate finality, and
low operational costs for end-users. Moreover, to be compliant
with KYC & AML practices, we incorporate decentralized
identity management of end-users while we let the users
creating smart contracts (for various businesses and use cases)
to optionally choose polling of our identity registry available
as a dedicated smart contract. Next, we introduce a novel
monetary policy that automatically regulates the block reward
according to the ratio of circulating supply to total supply.

II. BACKGROUND

In this section, we describe the background information
necessary to understand the remaining parts of the paper.
Readers already familiar with principles of blockchains, smart
contracts, and decentralized identity management can skip this
section and proceed to Section III.

A. Blockchain

Blockchain is an ever-growing distributed ledger that is by
design resistant to modifications. Blockchain consists of blocks
that are linked using a cryptographic hash function, and each
new block has to be agreed upon by participants running a
consensus protocol (i.e., consenus nodes / validators / partic-
ipants). Each block may contain orders transferring crypto-
tokens, application codes written in a platform-supported
language, and the execution orders of such applications. These
application codes are referred to as smart contracts and can en-
code arbitrary processing logic (e.g., agreements). Interactions
between clients and the cryptocurrency system are based on
messages called transactions, which can contain either orders
transferring crypto-tokens or calls of smart contract functions.
All transactions sent to a blockchain are validated by validators
who replicate the state of the blockchain.



B. Features

We summarize the most salient features of blockchains in
the following [4].
Decentralization: is achieved by a distributed consensus pro-

tocol – the protocol ensures that each modification of the
ledger is a result of interaction among participants. In the
consensus protocol, participants are equal, i.e., no single
entity is designed as an authority. An important result of
decentralization is resilience to node failures.

Censorship Resistance: is achieved due to decentralization,
and it ensures that each valid transaction is processed and
included in the blockchain.

Immutability: means that the history of the ledger cannot be
easily modified – it requires a significant quorum of col-
luding nodes. The immutability of history is achieved by a
cryptographic one-way function (i.e., a hash function) that
creates integrity-preserving links between the previous
record (i.e., block) and the current one. In this way,
integrity-preserving chains (e.g., blockchains) or graphs
(e.g., direct acyclic graphs [5]–[7] or trees [8]) are built
in an append-only fashion. However, the immutability of
new blocks is not immediate and depends on the time
to the finality of a particular consensus protocol (see
Section II-D).

Availability: although distributed ledgers are highly redun-
dant in terms of data storage (i.e., full nodes store repli-
cated data), the main advantage of such redundancy is
paid off by the extremely high availability of the system.
This feature may be of special interest to applications that
cannot tolerate outages.

Auditability: correctness of each transaction and block
recorded in the blockchain can be validated by any
participating node, which is possible due to the publicly-
known rules of a consensus protocol.

Transparency: the transactions stored in the blockchain as
well as the actions of protocol participants are visible to
other participants and in most cases even to the public.

C. Permission Models

Based on how a new node enters a consensus protocol, we
distinguish the following blockchain types [4]:
Permissionless blockchains allow anyone to join the consen-

sus protocol without permission. Such participation can
be anonymous (or pseudonymous), and these protocols
are designed to run over the Internet. To prevent Sybil at-
tacks, this type of blockchains usually requires consensus
nodes to establish their identifiers by running a Proof-of-
Resource protocol, where the consensus power of a node
is proportional to its resources allocated.

Permissioned blockchains require a consensus node to obtain
permission to join the consensus protocol from a cen-
tralized or federated authority(ies), while nodes usually
have equal consensus power (i.e., one vote per node).
These schemes can be public if they are accessible over
the Internet or private when they are deployed over a
restricted network.

Semi-Permissionless blockchains require a consensus node to
obtain some form of permission (i.e., stake) before joining
the protocol; however, such permission can be given by
any consensus node. The consensus power of a node is
proportional to the stake that it has.

D. Consensus Protocols

There are several approaches to establishment of consensus
among consensus nodes. In the following, we describe the
main types of consensus protocols:
Proof-of-Resource: a consensus nodes produces a valid block

upon proving that the scarce resource was spent by a node
to produce a valid block. For example in Proof-of-Work,
nodes try to solve a puzzle which is often finding the
hash value of a current block lower than some network-
specified threshold (i.e., Nakamoto Consensus [1]). An-
other example are Proof-of-Storage protocols, where con-
sensus nodes have to prove storing of certain data to
produce a valid block.

Proof-of-Stake: in contrast to the previous category, no scarce
resource is spent; instead, the nodes are required “to prove
investment” of crypto-tokens to participate in a proto-
col, and thus eventually earn interest from the invested
amount [9]. The advantage of Proof-of-Stake and Proof-
of-Resource protocols is their high scalability in terms of
number of consensus nodes, while they suffer from low
transaction throughput and slow time to finality.1

Proof-of-Authority: these protocols were introduced as a
possible response to a limited transaction throughput and
slow time to finality in the previous two categories. In
detail, the stake (of PoS protocols) is replaced by a repu-
tation of a participant, while the number of participants is
limited, and thus can utilize variants of BFT protocols that
impose high overhead on message exchanges but ensure
almost immediate finality.

E. Ethereum

Ethereum [2] is the first public permissionless smart con-
tract platform using blockchain. The consensus protocol of
Ethereum is based on EtHash Proof-of-Work but in contrast
to Bitocoin’s puzzle, it was designed to resists ASIC-based
mining by requiring miners to store large portions of data with
fast random access.

Each Ethereum consensus node contains Ethereum Virtual
Machine (EVM) for execution of transactions that can deploy
smart contracts and execute their code. Such an execution of
transactions modifies the global state of Ethereum, represented
by the Merkle-Patricia trie (MPT), an integrity-preserving
data structure, which contains data of all accounts states
(simple accounts + smart contracts) and is maintained by every
consensus node. Each account state contains the following:
• nonce – the number of transactions sent from the current

account in the case of a simple account. In the case

1I.e., one needs to wait several minutes until her transaction became
irreversible with high enough probability.



of a smart contract account, it represents the number of
internally created contracts by the current smart contract.
In both cases, this value serves as a reply attack protec-
tion, in which the attacker cannot re-execute the same
transaction multiple times.

• balance – a balance of the account in Wei.
• storageRoot – a root hash of the storage contents (i.e., the

MPT trie) bound to the account state of a smart contract.
If the account state is a simple account, this field is empty.

• codeHash – a hash value of the smart contract’s code,
which is executed when the smart contract receives a
transaction with a call. If the account state is a simple
account, this value is empty. Note that codes are stored
in a dedicated key:value store.

1) Header: The Ethereum header contains the following:2

• parentHash – the hash of the previous block.
• ommersHash – the hash aggregating the uncle blocks

(i.e., stale) blocks.
• beneficiary – the 160-bit long address of the consensus

node who mined this block.
• stateRoot – the root hash of MPT representing the global

state.
• transactionsRoot – the root hash of Merkle tree aggre-

gating all transaction within the current block.
• receiptsRoot – the root hash of Merkle tree aggregating

all execution receipts from EVM that correspond to all
transactions within the block.

• logsBloom – the Bloom filter containing indexable data
from logged entries – i.e., emitted events.

• difficulty – the difficulty value of PoW puzzle.
• number – the number of preceding blocks from the

genesis block (i.e., height).
• gasLimit – a maximum gas capacity of the current block.
• gasUsed – a gas used by all transactions of the block.
• timestamp – a timestamp of the block creation.
• extraData – data related to EtHash PoW.
• mixHash – proof data related to EtHash PoW.
• nonce – proof data related to EtHash PoW.

2) Monetary Policy: Ethereum Foundation originally pro-
posed fixed block reward of 5 ETH per block and no limit on
total supply.

However, since then Ethereum decreased the price of a
block reward two times (to 3 ETH in 2017 and to 2 ETH in
2019) through hard forks [10]. These two reward reductions
happened as a part of Ethereum’s philosophy of minimum
necessary issuance. On top of the block reward, Ethereum pays
up to 75% of the full block reward to miners of stale blocks
(referred to as uncles or ommers), while it also incentivizes
miners who include such blocks (in ommersHash).

F. Hyperledger Besu
Hyperledger Besu (further Besu) [11] is Java-based

Ethereum client formerly known as Pantheon, which was

2Underlined fields are specific to PoW consensus protocol, and thus are
mostly unrelated for this paper.

developed mainly by PegaSys team from ConsenSys. Besu
represents permissioned blockchain that can operate over
public or private networks and it supports account-based as
well as node-based permissioning. The architecture of Besu
is depicted in Figure 1, showing that most of the Besu
components and principles are inherited from Ethereum.3

1) Standardization: Since Besu is based on principles
of Ethereum, it implements the Enterprise Ethereum Al-
liance (EEA) standards for Ethereum-compatible permissioned
blockchains [12] and Ethereum clients [13]. EEA envisions
to standardize the consensus protocol, where the most likely
candidate is IBFT 2.0.

2) Consensus Protocols: Besu enables to use consensus
protocols based on PoW or PoA. PoA consensus protocols
are specifically intended for consortium blockchains, and Besu
currently supports two PoA consensus protocols [14]:
• IBFT 2.0 – In IBFT 2.0, transactions and blocks are

validated by pre-approved consensus nodes (a.k.a., val-
idators). Validators create blocks in round robin fashion.
Existing validators propose and vote to add or remove
validators using the extraData header field. IBFT 2.0
has almost immediate finality. Hence, forks might barely
occur and all valid blocks are included in the main chain.

• Clique – Clique is more fault-tolerant than IBFT 2.0.
It tolerates up to 1

2 of failing validators, while IBFT
2.0 tolerates only up to 1

3 of failing validators. Clique
does not have immediate finality, and thus forks might
temporarily exist, which limits its utilization.

3) Permission Model: Besu provides two ways of account
permissioning [15]: (1) off-chain (i.e., local) permissioning
and (2) on-chain permissioning. Off-chain permissioning is
individual to each validator, and enables validators to maintain
their own white-list of addresses allowed to create trans-
action. In contrast, on-chain permissioning is common to
all validators, which through their RPC service watch and
parse the white-list stored in the account permissioning smart
contract [16], while ignoring transactions coming from non-
white-listed addresses. The white-list in smart contract is
maintained by one or more Besu blockchain accounts with
the admin role.

On top of account permissioning, Besu also provides node
permissioning, and thus allows a single party to modify the
list of validators according to its will, and thus degrades the
decentralization of blockchains utilizing it.

4) Key Management: Besu supports standard Ethereum-
compatible wallets for managing private keys, such as Meta-
mask, MyEthetWallet, etc. ConsenSys also recommends Eth-
Signer tool that provides access to key store (in a local file
or cloud) and signs transactions via tools like Hashicorp Vault
and Microsoft Azure.

5) API: User-oriented APIs of Besu conform to EEA [13]
and thus support JSON-RPC and Ethereum’s mainnet APIs.

3Different components are IBFT and Clique consensus protocols as well
as GraphQL API.



Figure 1. Architecture of Hyperledger Besu [14].

The APIs support WebSocket and HTTP protocols. Addition-
ally to Ethereum, Besu also supports GraphQL API.

6) Header: To ensure compatibility with existing Ethereum
development tools and wallets, Besu is using the same header
structure as Ethereum. However, in the case of PoA setting
(through IBFT 2.0), Besu does not utilize 4 PoW-specific
header fields (i.e., underlined fields in Section II-E1 with
exception of extraData). Nevertheless, these fields are part
of the header data and contribute to the overall size of the
blockchain.

G. Identity Management

Identity management refers to binding identities of entities
to their public keys. This concept is also referred to as Public
Key Infrastructure (PKI), and it has a few security goals [17]:
• Accurate Registration: The user must be unable to

register an identity that she does not own.
• Identity Retention: The user must be unable to imper-

sonate an identity already registered.
• Censorship Resistance: The user must be able to register

any identity that she owns.
Using decentralized environment of blockchains can improve
confidence in security goals of identity management by en-
abling users to own and manage their identity-related entries.
Decentralized identity is addresses in W3C standard [18]

1) Decentralized ID (DID): Decentralized Identifiers
(DIDs) [18] represent a new type of universally unique iden-
tifiers whose control is decentralized since all roots of trust
are contained in the blockchain and each entity might create
its own root of trust (a.k.a., trusted anchor). DID employs the
same hierarchical scheme for globally unique strings as URI,
and it maps DID strings to DID documents containing data
such as public keys, references to service endpoints associated
with the entity, links to off-chain data, etc. Each DID document
is stored in the blockchain and only the owner can create,
manage, and prove ownership of her DID document.

2) ERC 725v1: is smart contract standard for managing
identities of humans, groups, objects, and machines [19], in
which, identity is associated with several keys serving various
purposes, e.g., claims by individuals, quorums of keys to act
on behalf of an organization’s identity, access control, and
privileges within an organization, etc. ERC 725v1 focuses on
access control of smart contracts in proxy fashion, while each
user requires her own contract. Moreover, all the keys are
stored in the expensive storage of EVM.

3) ERC 1056: is a DID-compliant standard for manging
identities with a limited use of blockchain resources [20] (i.e.,
storage in particular). Each identity can have unlimited number
of delegates and attributes associated with it (representing DID
document), while only the identifier of identity (DID) is stored
in the expensive storage of EVM. Delegates and attributes of
an identity are modified through emitting Ethereum events.
This approach saves gas expenses imposed on EVM’s storage
but on the other hand requires a dedicated centralized service
for processing of event stream and provisioning the most
recent version of DID documents. In contrast to ERC 725v1
where each user requires her own contract, ERC 1056 serves
as a single registry contract for all identities.

4) Identity-Oriented Blockchains: The Sovrin [21] is an
example providing a public permissioned blockchain that con-
sists of consensus nodes approved by Sovrin. Another example
is Hyperledger Indy [22], which is project for a custom
public permissioned blockchain intended for self-sovereign
management of DIDs and their corresponding documents.

III. BLOCKCHAIN

In this section, we describe components of Blockchain,
its consensus mechanism, and monetary policy. We have
built Blockchain as a public permissioned blockchain based
on Hyperledger Besu, and thus it is fully compliant with
EEA standards. Moreover, we maintain and offer to users
the identity registry smart contract that provides a white-list
of addresses in the Blockchain that have verified identities.
However, it is an optional mechanism, and we do not limit
utilization of Blockchain by any account permissioning mech-
anisms. Blockchain has its own native token denoted as GEN.

A. Consensus Protocol

Out of the consensus protocols provided by Besu, we opt
for IBFT 2.0 since it best fits the needs of the PoA blockchain
with a limited number of validators and requirements on
high transactional throughput. Moreover, IBFT enables almost
immediate finality, which on top of fast block creation rate
(e.g., every 10s), offers almost real-time response of deployed
DAPPs, so the users do not have to wait between any two
dependent consecutive smart contract calls.

Due to high communication complexity of IBFT, the max-
imum number of validators participating in the consensus
protocol is constrained to 50, and the minimum number of
validators is equal to 4.



B. Identity Management
Inspired by the lightweight registry design of ERC 1056,

we have designed a custom identity registry contract that
maintains a white-list of accounts whose owners have verified
identities by an external identity provider. The list of identity
providers is managed by a group of operators requiring a
majority consensus on each action through multi-sig. We note
that these identity providers as well as all users with verified
identities exist on a dedicated Hyperledger Indy blockchain,
and thus their public DID documents can be retrieved and
verified. Therefore, our solution as a whole is DID-compliant.

1) Inserting Entries: To insert a new entry into identity
registry, we do not require any special role and thus anybody
who will submit a minimal verifiable credentials (MVCs) of
some user with valid signature made by a known identity
provider can create such an entry. MVCs contain the DID
of the user’s account in Blockchain (i.e., encoded as the GEN
address) and indication whether the user has legitimate identity
(i.e., bool flag). Note that MVCs do expose only minimal
private information about the users, which is very unlikely
to cause any harm.

2) Revoking Entries: Each identity registry entry stores
its creation date, and it is the subject to implicit expiration
after selected number of years4. After this time interval,
the identities need to be verified again. On top of implicit
expiration, entries in identity registry can be revoked explicitly
by a majority consensus of identity admins.

3) Utilizing Registry: To leverage the potential of our
identity registry for KYC and AML purposes, users designing
their smart contract can utilize an external method of our
registry, which validates identity of any requested address, and
thus provides access control.

C. Permission Model
We apply different permission models for validators and

users, and we describe them in the following:
1) Validators: We follow a public permissioned model in

the case of validators, in which a new validator can be added
into Blockchain upon approval of more than 2

3 of existing
validators. The procedure is executed on-chain, and Besu
utilizes the extraData header field for this purpose.

2) Users/Clients: We follow a public semi-permissionless
model for users, in which a new user account can be created by
any existing user or validator by sending a non-zero amount
of GEN to the account. Such an account can hold GEN and
interact with any smart contract that does not enforce KYC
by our identity registry contract Section III-B.

D. Reputation of Validators
Besu contains embedded mechanism for adding and remov-

ing validators from the consensus protocol. The corresponding
data for this mechanism are part of the blockchain. To further
facilitate the process of adding and removing validators and to
motivate validators to act timely, a reputation system should
reflect the liveness and safety as well as compliance.

4This number can be changed upon majority consensus of identity admins.

a) Liveness: The reputation system monitors the ex-
pected minted blocks versus truly minted valid blocks by
particular validators. In similar way, we assess the reputation
of validators based on availability during running of IBFT in
the rounds when they are not selected as leaders. In this way,
we can identify candidates for removal from Blockchain and
at the same time we motivate the validators to invest their
resources into the quality of their network connection and
availability of their hardware.

b) Safety: The reputation systems can also monitor in-
valid blocks minted by particular validators as well as minted
blocks at the same height, with the intention to create the fork.

c) Compliance: Finally, the reputation system can reflect
the compliance with agreed parameters such as minimum
gas price. For example, one validator could decrease the
minimum gas price and attract more client transactions, which
might overall increase the obtained transaction fees. Another
example from this category might assess the availability of
validators within a dedicated off-chain distributed file system
(DFS) if the blockchain platform assumes it. In this case, the
availability proofs related to off-chain DFS can be provided
and verified on-chain. The best candidate enabling provision-
ing of indisputable proofs of (non-)availability is Proof-of-
Replication [23].

In the current version of Blockchain, we incorporated
liveness-based reputation assessment and we describe its de-
tails in the following. We note that other reputation assessment
approaches will be part of the governance process.

1) Details of Current Reputation Assessment: Besu uses
block header to store some information about validators, which
can be accessed through Besu’s RPC methods:
• ibft getV alidatorsByBlockNumber and
• ibft getSignerMetrics.

The former returns list of validators for given block number
while the latter returns metrics showing how many blocks each
validator validated in a given block range.

However, raw data returned by these methods are not
sufficient to quickly assess reputation of validator. Therefore,
Blockchain is equipped with a reputation assessment applica-
tion that regularly downloads data using the mentioned RPC
methods and stores them locally. For any given range of blocks
the application displays:
• A timeline showing percentage of blocks created by each

validator (see Figure 2). If a validator omits some block
creation in IBFT, this chart can reveal it.

• A timeline displaying active intervals of validation for
each validator (see Figure 3).

• A table with basic statistics – the number of blocks
each validator validated, should validate, and missed (see
Figure 4).

E. Incentives and Monetary Policy

Blockchain allows defining treasury (i.e., the improvement
reserve) and operator addresses, which are used as recipients
obtaining a given percentage of block reward and block fees,



Figure 2. Reputation assessment tool – block percentages created by each validator.

Figure 3. Reputation assessment tool – activity of validators.

Figure 4. Reputation assessment tool – statistics.

while the validator of a block receives the rest. In the initial
version of Blockchain, treasury receives 5% of block reward
and operator receives 10% of block fees.

Unlike other POA blockchains that use a fixed block reward,
Blockchain uses its own self-regulating block reward system,
which adjusts block reward based on a total GEN supply
distribution. We detail it in the following.

1) Reward Self-Regulation: On top of Besu’s epochlength
parameter, Blockchain monetary system introduces additional
epoch length parameter L, defining a block period after which
the block reward is periodically adjusted by the network. Given
a block number n, we define epoch number ε = bn/Lc.

Blockchain adapts the difficulty field of the header to
represent the block reward. We define the initial block reward

r0 and initial difficulty d0 in the genesis file. The block reward
r is then calculated from difficulty d as

r = r0 ·
d0
d
. (1)

In epoch ε = 0, all blocks have difficulty d = d0 so all
block rewards are equal to r0. Entering the new epoch causes
a change in difficulty d, which in turn changes the reward r.
The difficulty remains unchanged during the epoch. Difficulty
calculation uses PID regulation [24].

For a given block number, we define Stotal as the total
number of GEN minted, Sval as the number of GEN on
all validators’ addresses and circulating supply as Scirc =



Stotal − Sval. Therefore, the ratio

ϕ =
Stotal
Scirc

= 1 +
Sval
Scirc

(2)

represents the fraction of all GEN on validators’ addresses.
When ϕ→ 1, percentage of GEN held by validators is close
to zero. The higher the value of ϕ, the higher percentage of
GEN is held by validators.

In our model, the value of ϕ should decrease in time, as
Stotal increases. It’s because we want smaller fraction of GEN
to be on addresses of validators as Stotal increases. To express
this mathematically, initial ratio ϕ0, final ratio ϕ∞ < ϕ0 and
ratio decay α ∈ (0; 1) are introduced in the genesis file. Target
ratio ϕt(ε) is expressed by exponential decrease of ϕ from ϕ0

to ϕ∞ as a function of epoch number ε:

ϕt(ε) = ϕ∞ + (ϕ0 − ϕ∞) · αε. (3)

The aim of the PID regulation is to modify block reward r
in such a way that ϕ keeps very close to ϕt. To express how
much ϕt differs from ϕ, we introduce regulation factor ψ.
Both ϕ and ϕt are rounded down to 3 decimal places before
entering the following expression:

ψ =
ϕ− ϕt√

max (ϕt − ϕ∞; 0.001)
. (4)

To cutoff extreme values of ψ, the values of ψ > 1 are
saturated to 1 and values of ψ < −1 are saturated to −1. For
further calculations, ψ is rounded down to 3 decimal places.
The value of ψ can be interpreted in the following way;
• If ψ > 0, validators hold more GEN than desired. The

bigger ψ value, the bigger the difference. The block
reward r should decrease in the next epoch.

• If ψ = 0, validators hold exactly the number of GEN they
should hold according to our model. The block reward
should not change in the next epoch.

• If ψ < 0, validators hold less GEN than desired. The
lower ψ value, the higher the difference. The block reward
r should be increased in the next epoch.

Values of ψ enter PID regulation to calculate the ratio of
a difficulty change. Suppose that Blockchain contains the last
block of epoch ε and is about to create the first block of epoch
ε + 1. Let ψε to represent a value of ψ in the last block of
epoch ε, ψε−1 value of ψ in the last block of epoch ε− 1 and
so on. Then we define

Ψε = tanh

(
kpψε + ki

P−1∑
i=0

ψε−i + kd (ψε − ψε−1)

)
, (5)

where kp, ki and kd are positive parameters of proportional,
integral, and derivative part of PID regulation and P is a period
over which integral part sums. All of these parameters are
defined in the genesis file. The PID result is normalized by
hyperbolic tangent ensuring that Ψε ∈ [−1; 1]. In the case of
ψε−1 is not defined, derivative part is omitted.

The resulting Ψε is rounded down to 3 decimal places and
used for calculation of difficulty dε+1 for epoch ε+ 1.
• dε+1 = dε if Ψε = 0,
• dε+1 = dε · (1 + Ψε) if Ψε > 0,
• dε+1 = dε/ (1−Ψε) if Ψε < 0.
These calculations ensure that both difficulty and reward

change in the range of [−50%; +100%] from their previous
values. Next, we define additional variables in the genesis file
which define the minimal and maximal value of the difficulty,
which are taken into account when modifying the difficulty.

Another parameter of the genesis file is the minimal block
reward, which determines the maximal difficulty. In addition,
we introduce minimal inflation parameter which enforces
block reward to be greater than or equal to a value guarantee-
ing the total supply Stotal to increase by minimal inflation
in 365 days. The minimal inflation parameter is intended
for the later epochs of Blockchain, while direct definition of
minimal block reward suits the first epochs. Minimal difficulty
determines Maximal block reward, and it is included in the
genesis file directly.

F. Governance

To reach a decision on particular problems and questions
that might arise during the operation of Blockchain, we specify
the governance model and the topics it is dealing with.

1) Body: The governance body of Blockchain consist of all
validators and decisions are reached through smart contract
voting using multi-sig. Since validators are rewarded for
running the network and are accountable for their actions,
they are expected to make decisions that are beneficial for
the platform’s long-term growth and stability.

We enable any validator to start voting on a particular
matter. The voting si currently publicly visible – everyone
sees what options validators voted for. However, in some im-
provement proposal, we also plan to enable privacy preserving
voting [25], [26], where the votes of validators are blinded by
zero knowledge constructs.

2) Topics: The governance process can control the follow-
ing three topics:
• technology – this topic involves technological updates of

the platform, approval of new tool development, param-
eters such as block creation rate and gas limit per block,
fixing bugs through hard forks, etc.

• economy – the monetary policy might be updated with
the intention to regulate inflation rate, the size of the
improvement reserve and purposes of its utilization.

• governance – this category covers changes to the gov-
ernance model, for example adding end-users to specific
kind of voting.

3) Improvement Reserve (Treasury): Since technology
is constantly improving, Blockchain ecosystem requires the
ability to quickly adapt to technology changes, inventions,
and breakdowns. To quickly respond on technological changes,
we maintain an improvement reserve within a dedicated smart



contract, which is funded in each block with 5% of the block
reward. The balance of the contract can be transfered through
majority consensus of validators, which is achieved by publicly
visible multi-sig control.

Besides the reaction on technological changes, this fund
is also intended for maintenance of development and user-
oriented tools underpinning Blockchain, including blockchain
explorers, reputation system, identity management, standard
DAPPs, testing networks, etc.

G. Wallets

All existing Ethereum wallets are compatible with
Blockchain since Besu conforms to EEA standards (see Sec-
tion II-F1). The important aspect of the wallet is the possibility
of pairing with a hardware wallet, such as Trezor, Ledger,
KeepKey, or Evoled. One notable example of open source
wallet supporting such pairing is Metamask,5 which comes
in the form of the browser plugin.

a) Smart Contract Wallets with 2FA: For the higher
amounts of GEN, the clients might create a smart contract wal-
let secured with two-factor authentication, such as Gnosis [27]
or SmartOTPs [28].

In Gnosis, the client needs to have two private keys stored in
– either two hardware wallets or one hardware wallet and one
software wallet. Then, to make an operation with the wallet
(i.e., transfer), the client creates and submits two transactions
with the same operation but signed by different wallets.

In SmartOTPs, the client needs to posses one hardware
wallet and one authenticator token (e.g. App in a smart phone).
To make an operation with the wallet, the client first submits
a signed transaction with hardware wallet and then submits
an OTP obtained from the authenticator within the second
transaction.

H. Recovery of Private Keys

Standard way of key recovery for any single factor wallet
is through backed up mnemonic HD seed associated with the
wallet. The users should store these seeds in a secure places.

We note that SmartOTPs [28] provide recovery for lost se-
crets (i.e., authenticator, hardware wallet, or both) through the
last resort address and timeout functionality – after expiration
of a timeout, any exiting user of Blockchain can call a method
of a smart contract, which will send the remaining balance to
the last resort address.

I. Minimal Hardware Requirements for Validators

Validators in Blockchain must be equipped at least with the
following hardware:
• 4x CPU clocked at 2.4 GHz,
• 8 GB RAM, and
• 500 GB SSD hard drive.

In the case of using AWS EC2, we recommend to use at least
the c5.xlarge instance and compute optimized option.

5https://metamask.io/

J. Faucet

Blockchain Faucet consists of both smart contract and web
application. The smart contract Faucet allows sending of 1
GEN to a given address and is limited to one withdraw per
10 blocks per address. Due to the smart contract nature of
the faucet, GEN can be distributed even without the web
application.

The web application part of the faucet is equipped with CLI
that enables deployment of the faucet smart contract and its
initialization with some funds. Then, Web UI of the faucet
enables to call faucet smart contract and thus send 1000 GEN
to a given Blockchain address.

IV. EVALUATION

In this section, we estimate the storage consumption im-
posed by using Blockchain in terms of requirements on storing
the blockchain itself and its global state.

1) Size of the Blockchain: It is important to estimate the
size of Blockchain in time. In the following, we assume the
header size of 508B. If we were to create empty blocks with
block creation time of 10s, then the blockchain would grow
by ∼3.15MB every year (i.e., 3600

10s × 24 × 365). Hence, the
overhead for fast time to finality and a short block creation
time is negligible.

If we were to assume 100K simple payment transactions
per day, Blockchain would grow by 7.77GB every year (i.e.,
105 × |txp| × 365 + 3.15MB, where |txp| = 203B). In the
case of the same number of smart contract calls assuming the
average transaction size |txs| = 500B, the yearly growth of
the blockchain size would be 18.26GB (i.e., 105×|txs|×365+
3, 15MB); however, one needs to account for smart contract
deployments, where the code size of a single contract might
be up to 512kB.

2) Size of the Global State: On top of the blockchain data,
each validator has to maintain the global state consisting of
all account state objects aggregated by Merkle-Patricia Trie
(MPT). The size of the global state is dependent on four items:
• the number of accounts,
• the number of nodes in MPT trie,
• the size of storages associated with the accounts (in the

case of smart contracts),
• the code size of accounts (in the case of smart contracts).

We demonstrate a size of the global state for several full MPT
(containing the number of simple accounts equal to powers of
16) in Table I, where we assume that the size of each account
state equal to 42B and size of a each branch node equal to
512B. Note that if we were to assume all the citizens of Czech
Republic to be part of Blockchain, we would end up on the
sixth level of MPT, consuming up to 1.3GB of data.

The model example of the global state consisting of a smart
contract accounts only is showed in Table II, where we assume
the average size of a smart contract code is equal to 4kB and
the average storage size of each contract is equal to 16kB. We
note that smart contract accounts are in general not so frequent
as simple accounts. Nevertheless, if we were to assume that



MPT Level # of Simple Accounts Size of Global State

1 16 1.18 kB
2 256 19.45 kB
3 4096 311.80 kB

4 65.55×103 4.99 MB

5 1.04×106 79.83 MB

6 16.77×106 1.27 GB

7 0.26×109 20.04 GB

8 4.29×109 326.99 GB

9 68.71×109 5.23 TB

10 1.09×1012 83.71 TB

Table I
SPACE REQUIREMENTS ON GLOBAL STATE CONSISTING OF SIMPLE

ACCOUNTS ONLY.

MPT Level # of Smart Contracts Size of Global State

1 16 18.55 kB
2 256 4.88 MB
3 4096 76.11 MB

4 65.55×103 1.21 GB

5 1.04×106 19.48 GB

6 16.77×106 311.79 GB

Table II
SPACE REQUIREMENTS ON GLOBAL STATE CONSISTING OF SMART
CONTRACTS ONLY. WE ASSUME AVERAGE CODE SIZE OF SMART

CONTRACT AND STORAGE EQUAL TO 2KB AND 16KB, RESPECTIVELY.

all citizens of the Czech Republic posses exactly one smart
contract, then the size of the global state would be up to
320GB.

V. DISCLAIMER

The content of this White Paper is subject to a change in ac-
cordance to the governance model proposed, laws, regulations,
and advancements of the technology and research.

VI. CONCLUSION

In this White Paper, we described Blockchain with its public
permissioned model. Blockchain is based on Hyperledger Besu
but in contrast to its vanilla flavor, Blockchain introduces
a novel monetary policy model that regulates the block re-
ward according to the current circulating supply. Blockchain
also contains its dedicated means for decentralized identity
management, enabling any smart contract to perform KYC
checks upon its discretion, and thus increase the reputation and
credibility of the business or use case that it addresses. Next,
we created a liveness-based reputation system for assessment
of validators’ performance and availability, which serves as an
input for adjustments of validator set. In future work, we plan
to incorporate new proposals and (mentioned) improvements
as part of the governance model.
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