
When Front-End Met Back-End
A GraphQL Love Story

I’m Jake 👋
@jakedawkins

Meet Client

@jakedawkins

Meet Client
• Display

• Loading assets

•Orchestrating interactions

• First line of defense

•Not good at serious data storage or processing
@jakedawkins

Meet Server

@jakedawkins

Meet Server

•Workhorse - great at processing data

•Methodical

• Useless without someone to display the data

@jakedawkins

So… They’re Perfect
for One Another

@jakedawkins

Client is Needy

•Multiple Requests

• Needs complicated data

• Needs data from other sources

@jakedawkins

Client is Tired

• Rendering work

• Deals with people all day

• Doesn’t like data processing

@jakedawkins

Server is Controlling

• Front-end needs information
from others

•Wants to reduce conflicting data

@jakedawkins

Server is Confusing

• Documentation

• either out of date or missing

• Changes its mind

@jakedawkins

Server is Fragile

•Many reasons a server can fail

• Hard to pinpoint errors

•Many points of possible failure

@jakedawkins

GraphQL
A means of resolving the

communications differences
between the client and server

@jakedawkins

GraphQL
A means of resolving the

communications differences
between the client and server

@jakedawkins

Client is Needy

@jakedawkins

GraphQL is Understanding

• Client can ask for exactly what it wants

•Multiple entities in a single request

• Nested and recursive data shapes

@jakedawkins

Aliased Field

@jakedawkins

@jakedawkins

Client is Tired

@jakedawkins

GraphQL is Hardworking

• Client only gets what it needs

• Field arguments allow the front-end to be very
specific about what it wants

• Bonus: Client knows the response data shape

@jakedawkins

Field Arguments

@jakedawkins

Server is Controlling

@jakedawkins

GraphQL is Connectable

• Aggregating data from multiple sources is
simple and done on a per-field basis

• Allows for a single server to be our source of
truth

• Bonus: 3rd party API changes don’t require
app updates.

@jakedawkins

GraphQL
Resolver

ResponseRequest

@jakedawkins

Whatever the parent returns Field arguments Context (business logic/auth/etc)

@jakedawkins

Server is Confusing

@jakedawkins

GraphQL is Self-Documenting

• Fields are typed

• No need for multiple endpoints

• Versioning is rarely needed because API
changes don’t have to be breaking changes

• Everything is available to introspection
@jakedawkins

Field
Arguments

All Fields

Argument
Types

@jakedawkins

ResponseRequest Documentation 🎉

Server is Fragile

@jakedawkins

GraphQL is Flexible

• Errors are returned like regular data with clear
descriptions

• Everything is nullable by default

• Incoming queries are evaluated against syntax
and schema rules

@jakedawkins

Incorrect Argument Type

@jakedawkins

Client is needy. GraphQL is understanding.

Client is tired. GraphQL is hardworking.

Server is confusing. GraphQL is self-documenting.

Server is controlling. GraphQL is connectable.

Server is fragile. GraphQL is flexible.

@jakedawkins

@jakedawkins

