
When Front-End Met Back-End 
A GraphQL Love Story



I’m Jake 👋
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Meet Client
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Meet Client
• Display


• Loading assets


•Orchestrating interactions


• First line of defense


•Not good at serious data storage or processing
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Meet Server
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Meet Server

•Workhorse - great at processing data


•Methodical


• Useless without someone to display the data
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So… They’re Perfect  
for One Another
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Client is Needy

•Multiple Requests


• Needs complicated data


• Needs data from other sources
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Client is Tired

• Rendering work


• Deals with people all day


• Doesn’t like data processing
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Server is Controlling

• Front-end needs information 
from others


•Wants to reduce conflicting data
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Server is Confusing

• Documentation


• either out of date or missing


• Changes its mind
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Server is Fragile

•Many reasons a server can fail


• Hard to pinpoint errors


•Many points of possible failure
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GraphQL
A means of resolving the 

communications differences 
between the client and server
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GraphQL
A means of resolving the 

communications differences 
between the client and server
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Client is Needy
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GraphQL is Understanding

• Client can ask for exactly what it wants


•Multiple entities in a single request


• Nested and recursive data shapes
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Aliased Field
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Client is Tired
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GraphQL is Hardworking

• Client only gets what it needs


• Field arguments allow the front-end to be very 
specific about what it wants


• Bonus: Client knows the response data shape
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Field Arguments
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Server is Controlling
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GraphQL is Connectable

• Aggregating data from multiple sources is 
simple and done on a per-field basis


• Allows for a single server to be our source of 
truth


• Bonus: 3rd party API changes don’t require 
app updates.
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GraphQL 
Resolver

ResponseRequest
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Whatever the parent returns Field arguments Context (business logic/auth/etc)
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Server is Confusing
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GraphQL is Self-Documenting

• Fields are typed


• No need for multiple endpoints


• Versioning is rarely needed because API 
changes don’t have to be breaking changes


• Everything is available to introspection
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Field 
Arguments

All Fields

Argument 
Types
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ResponseRequest Documentation 🎉



Server is Fragile
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GraphQL is Flexible

• Errors are returned like regular data with clear 
descriptions


• Everything is nullable by default


• Incoming queries are evaluated against syntax 
and schema rules
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Incorrect Argument Type
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Client is needy. GraphQL is understanding.

Client is tired. GraphQL is hardworking.

Server is confusing. GraphQL is self-documenting.

Server is controlling. GraphQL is connectable.

Server is fragile. GraphQL is flexible.
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