
CCIE R&S Lab Workbook Volume I Version 5.0 QoS

Copyright © 2008 Internetwork Expert www.InternetworkExpert.com
25

10.2 Weighted Fair Queuing (WFQ)

 Configure the point-to-point Serial link between R4 and R5 with an
interface clock rate and interface bandwidth of 128Kbps.

 Set the output hold-queue size to 256.

 Configure WFQ on the links with a length of 16 for the congestive discard
threshold, 128 for the number of conversations, and 8 for RSVP
reservable queues.

 Set the tx-ring size to the minimal value to engage the WFQ as fast as
possible.

 Normalize the packet flows for the link by ajdusting the MTU so that each
IP packet takes no more than 10ms to be sent.

Configuration

R4:
interface Serial0/1
 clock rate 128000
 bandwidth 128
 tx-ring-limit 1
 fair-queue 16 128 8
 hold-queue 256 out
 ip mtu 156

R5:
interface Serial0/1
clock rate 128000
 bandwidth 128
 tx-ring-limit 1
 fair-queue 16 128 8
 hold-queue 256 out
 ip mtu 156

Verification

 Note

WFQ uses an intelligent congestion management solution that provides “fair”
sharing of the interface bandwidth between multiple traffic flows. A traffic “flow”
(or conversation) is a unidirectional sequence of packets, defined based on the
protocol type, the source/destination IP addresses, the source/destination ports
numbers (when available), and partially on the IPv4 ToS byte value. For
example, an HTTP file transfer between two hosts represents one packet flow,
while ICMP packets sent from one host to another represents a second.

CCIE R&S Lab Workbook Volume I Version 5.0 QoS

Copyright © 2008 Internetwork Expert www.InternetworkExpert.com
26

The term “fair” on WFQ refers to the max-min fairness. The WFQ calculation
procedure is as follows.

First, divide the interface bandwidth equally between all flows. For example if
there are 10 flows, and 100Kbps of bandwidth, each flow gets 10Kbps. If a flow
demand is less than the “equal” share, e.g. a flow only needs 5Kbps instead of
10Kbps, allocate the unneeded bandwidth equally among the remaining flows.
If there are flows that demand more than the equal share, e.g. the equal share is
10Kbps, but two flows demand 25Kbps and 20Kbps respectively, they will each
get the equal, maximum, possible shares (e.g 19Kbps and 19Kbps) but only if
there are flows which demand less than the equal share.

In this context max-min means that all flows first get the bare minimum, but the
procedure tries to maximize each flow’s share if possible. The concept of basic
WFQ is very important to understand as many other congestion management
techniques utilize it, such as Round Robin scheduling. To reiterate, the key fact
in WFQ is that the max-min scheduling allows the sharing of a flow’s unclaimed
bandwidth between other flows.

An individual flow in the queue may be more or less demanding than other flows.
The “demanding” flow generates the higher bit-rate, either due to larger packet
sizes or a higher packet per second rate. For example compare a bulk FTP file
transfer against telnet sessions or VoIP RTP streams. Within the context of flow-
based sharing, it is also important to understand that a single host may generate
multiple flows, such as with with P2P file-sharing applications or download
“accelerators”, thus this particular host can obtain an “unfair” share of bandwidth
compared to other hosts. This, unfortunately, is a limitation of a classification
scheme that based on simple flows, such as WFQ, which has no notion of “flow
mask”.

To enhance its scheduling logic, WFQ may assign a weight value to a flow. The
weight affects the minimum guaranteed share of bandwidth available to a flow. If
there are N flows with weights w1, w2 ... wN, then flow K will get the minimum
share of bandwidth where sK=(w1+w2+… wK+… wN)/wK – inversely
proportional to its weight. The shares are relative, in the sense that the scheduler
divides the available bandwidth in proportions: s1:s2:…sN.

IOS implementation of WFQ assigns weights automatically based on the IP
Precedence (IPP) value in the packet’s IP header. The formula is
Weight=32384/(IPP+1), where IPP is the IP Precedence of the flow.

CCIE R&S Lab Workbook Volume I Version 5.0 QoS

Copyright © 2008 Internetwork Expert www.InternetworkExpert.com
27

To understand the effect of the weight settings, imagine four flows with different
IP Precedence values of zero, one, one and three.

Step 1:
Using the above formula for weight, we obtain:

Weight(1) = 32384/(0+1) = 32384
Weight(2) = 32384/(1+1) = 16192
Weight(3) = 32384/(1+1) = 16192
Weight(4) = 32384/(3+1) = 8096

Step 2:

Compute the sum of all weights:
Sum(Weight(i),1…4) = 32384+16192*2+8096 = 72864

Step 3:
Compute the shares:

Share(1) = 72864/Weight(1) = 72864/32384 = 2.25
Share(2) = 72864/Weight(2) = 72864/16192 = 4.5
Share(3) = 72864/Weight(3) = 72864/16192 = 4.5
Share(4) = 72864/Weight(4) = 72864/8096 = 9

The proportion is 2.25:4.5:4.5:9 = 1:2:2:4 – this is based on the “shifted” ip
precedences: (IPP(i) + 1)

Note that the numerator “32384” is arbitrary to those computations, meaning that
you can use any value. What is important however is the proportion of “shifted”
IP precedences.

For bandwidth sharing to be correct, all flows must be adaptive. Adaptive means
that a flow must respond to packet drops by slowing its sending rate. Non-
adaptive, aggressive flows may defeat the bandwidth sharing logic of WFQ by
claiming all available buffer space and starving other flows. This is directly linked
to the fact that all flows use shared buffer space when implementing WFQ (more
on this later).

CCIE R&S Lab Workbook Volume I Version 5.0 QoS

Copyright © 2008 Internetwork Expert www.InternetworkExpert.com
28

Specifically WFQ implements its fair sharing logic as follows. First, the scheduler
creates a group of flow queues for the interface, e.g. 256 “conversations”, based
on a manual setting or an automatic calculation derived from the interface
bandwidth. When a new packet arrives for output scheduling, the scheduler
applies a special hash function to the packet’s source/destination IP/Port values
to yield the flow queue number. This is why the number of queues is always a
power of 2, because the hash the output value is somewhere between 0 and 2N.
This procedure also means that multiple flows may share the same queue, called
“hash collision”, when the number of flows is large.

Each flow queue has a special virtual scheduling time assigned – the amount of
“time” that would take to serialize the packets in the queue across the output
interface. This “virtual time” is actually the total size of all packets stored in the
flow queue scaled by the flow computational weight.

Now imagine a new packet of size packet_size and IP precedence
packet_ip_precedence arrives to its respective flow queue (hash queue):

weight = 32384/(packet_ip_precedence +1)
virtual_scheduling_time = queue_tail_time + packet_size*weight
queue_tail_time = virtual_scheduling_time

The “queue_tail_time” variable stores the previous virtual scheduling time for the
flow. Note that the weight is inversely proportional to IP precedence, and thus
more important packets have smaller virtual scheduling time value (WFQ thinks
that it can serialize them “faster”). It is more appropriate to call this computational
weight the “scaling factor” to avoid confusion with the classic meaning of weight.

CCIE R&S Lab Workbook Volume I Version 5.0 QoS

Copyright © 2008 Internetwork Expert www.InternetworkExpert.com
29

F
lo

w
 1

F
lo

w
 2

F
lo

w
 1

F
lo

w
 2

F
ai

r
Q

u
e

u
e,

 N
o

 W
e

ig
h

ti
n

g
W

e
ig

h
ti

n
g

 b
as

ed
 o

n
 IP

P

Every time WFQ needs to take a packet out of all queues, it sorts all queues
based on their virtual scheduling time (sorting is time-consuming). The scheduler
selects the flow queue with minimum virtual scheduling time, sends a packet out
and then decreases the respective queue_tail_time variable by packet’s size. In
essence, this procedure tries to pull the short (smaller packets) flows traffic first.

However, the following question remains open: if a new flow queue has just
started, how should we initialize its queue_tail_time variable? Should we do that
based on just the first packets size? That would result in every new flow having
better chances of being scheduled then the older ones, with larger
queue_tail_times! This is why WFQ stores a special variable called
round_number shared by all queues. The round_number is the
virtual_scheduling_time of the last packet sent down the physical line. When a
flow queue is first initialized, its queue_tail_time is set equal to the latest
round_number, thus making it “comparable” with the existing flow queues, and
not letting it monopolize the physical line. The idea is to penalize the new flow by
the amount of time other flows have already waited so far.

CCIE R&S Lab Workbook Volume I Version 5.0 QoS

Copyright © 2008 Internetwork Expert www.InternetworkExpert.com
30

The next important point is the congestive discard threshold (CDT), which is a
unique congestion avoidance scheme available with WFQ. First you configure
the total buffer space allocated to WFQ using the hold-queue <N> out
command. The WFQ shares this buffer space between all flow queues. Any
queue may grow up to the maximum free space, but as soon as its size reaches
the CDT, WFQ drops a packet from a flow queue with the maximum virtual
scheduling time (this may be some other queue, not the one that crossed the
packet threshold). This way, WFQ penalizes the most aggressive flow and
triggers a mechanism similar to random early detection’s (RED) prevention of
tail-drop. The fair-queue settings command is fair-queue <CDT> <N Flow
Queues> <N Reservable Queues>.

The number of reservable conversations (queues) is the number of flow-queues
available to RSVP reservations (if any). Those flows have a very small weight
value, and thus are preferred above any other flows. In addition to reserved flow
queues, there are special “Link Queues”. The number of queues is fixed to 8, and
they are numbered right after the maximum dynamic queue (e.g. if there are 32
dynamic queues, “Link Queues” start at number 33). WFQ uses those queues to
service routing protocol traffic and Layer 2 keepalives – everything that is critical
to router operations and management. Each queue has a weight 1024, which is
lower than any dynamic queue can get, so control plane traffic has priority over
regular data traffic.

Finally, note that the interface bandwidth setting does not influence the WFQ
algorithm directly. It only prompts the WFQ command to pick up optimal
parameters matching the interface bandwidth. The bandwidth, however, is used
for admission control with RSVP flows.

CCIE R&S Lab Workbook Volume I Version 5.0 QoS

Copyright © 2008 Internetwork Expert www.InternetworkExpert.com
31

For this particular task, verification can be performed as follows.

Rack1R4#show queueing interface serial 0/1
Interface Serial0/1 queueing strategy: fair
 Input queue: 0/75/0/0 (size/max/drops/flushes); Total output drops: 2044
 Queueing strategy: weighted fair
 Output queue: 3/256/16/2044 (size/max total/threshold/drops)
 Conversations 2/3/32 (active/max active/max total)
 Reserved Conversations 0/0 (allocated/max allocated)
 Available Bandwidth 96 kilobits/sec

Rack1R4#show queueing fair
Current fair queue configuration:

 Interface Discard Dynamic Reserved Link Priority
 threshold queues queues queues queues
 Serial0/0 64 256 0 8 1
 Serial0/1 64 32 1 8 1

Changing the ip mtu for the interface in this task causes fragmentation at layer
3, and normalizes the packet sizes for further testing. With an additional 4 bytes
of overhead for the layer 2 HDLC encapsulation, every frame sent out the link
has a maximum size of 160 bytes (156 of IP plus 4 bytes of HDLC) . With a
physical clocking rate of 128000 bits per second, this means a 160 byte packet
will take a maximum time of 10ms to serialize. Adjusting serialization delay
through fragmentation is covered in more detail later in this document.

To verify how WFQ shares the interface bandwidth, configure the network as
follows:

1) Enable HTTP servers on R6 and R1 and set the root directory to “flash:”.

2) Shutdown the Frame-Relay interface of R5 to ensure traffic from VLAN146
takes the path across the serial link between R4 and R5.

3) Configure R6 to mark traffic leaving the VLAN146 interface with an IP
precedence of 1, and configure R1 to mark traffic leaving VLAN146 with an IP
precedence of 3.

4) Create a policy-map on R5 to match incoming IP precedence 1 and IP
precedence 3 packets, and apply it inbound to interface Serial 0/1. We will use
this policy to meter incoming traffic.

5) Copy IOS images stored in the flash memory of R1 and R6 to SW2 and SW4’s
“null:” destinations using HTTP.

The resulting configuration is as follows.

CCIE R&S Lab Workbook Volume I Version 5.0 QoS

Copyright © 2008 Internetwork Expert www.InternetworkExpert.com
32

R1:
ip http server
ip http path flash:
!
policy-map MARK
 class class-default
 set ip precedence 3
!
interface FastEthernet 0/0
 service-policy output MARK

R5:
class-map match-all IP_PREC3
 match ip precedence 3
 class-map match-all IP_PREC1
 match ip precedence 1
!
 policy-map METER
 class IP_PREC1
 class IP_PREC3
!
interface Serial 0/1
 service-policy METER input
 load-interval 30
 clock rate 128000
!
interface Serial 0/0
 shutdown

R6:
ip http server
ip http path flash:
!
policy-map MARK
 class class-default
 set ip precedence 1
!
interface FastEthernet 0/0.146
 service-policy output MARK

Rack1SW2#copy http://admin:cisco@155.1.146.6/c2600-adventerprisek9-
mz.124-10.bin null:

Rack1SW4#copy http://admin:cisco@155.1.146.1/c2600-adventerprisek9-
mz.124-10.bin null:

CCIE R&S Lab Workbook Volume I Version 5.0 QoS

Copyright © 2008 Internetwork Expert www.InternetworkExpert.com
33

The configuration effectively generates two TCP flows across R4’s connection to
R5. Since TCP is adaptive, the flows should eventually balance and start sharing
bandwidth using their weights: 1+1 and 3+1, which is 2:4. This means file
transfers from R1 to SW4 should have twice as much bandwidth as the file
transfer from R6 to SW2.

Rack1R5#show policy-map int serial 0/1
 Serial0/1

 Service-policy input: METER

 Class-map: IP_PREC1 (match-all)
 91618 packets, 17299811 bytes
 30 second offered rate 41000 bps
 Match: ip precedence 1

 Class-map: IP_PREC3 (match-all)
 330231 packets, 75523458 bytes
 30 second offered rate 83000 bps
 Match: ip precedence 3

 Class-map: class-default (match-any)
 58353 packets, 8839968 bytes
 30 second offered rate 0 bps, drop rate 0 bps
 Match: any

Check the flow queues on R4 to see their WFQ parameters. Note that the
average packet length is the same, and the inverse weight proportion is
1/8096:1/16192 = 2:1 (the guaranteed shares of bandwidth for IP Precedence 1
and IP Precedence 0 traffic).

Rack1R4#show queueing interface serial 0/1
<snip>
 (depth/weight/total drops/no-buffer drops/interleaves) 7/16192/0/0/0
 Conversation 20, linktype: ip, length: 580
 source: 155.1.146.6, destination: 155.1.58.8, id: 0x6927, ttl: 254,
 TOS: 32 prot: 6, source port 80, destination port 11009

 (depth/weight/total drops/no-buffer drops/interleaves) 6/8096/0/0/0
 Conversation 26, linktype: ip, length: 580
 source: 155.1.146.1, destination: 155.1.108.10, id: 0x7BCF, ttl: 254,
 TOS: 96 prot: 6, source port 80, destination port 11001

CCIE R&S Lab Workbook Volume I Version 5.0 QoS

Copyright © 2008 Internetwork Expert www.InternetworkExpert.com
34

As mentioned above, non-adaptive flows, such as UDP/ICMP traffic floods, may
oversubscribe the shared WFQ buffer space. This is due to their “greedy”
behavior - a single flow tries to monopolize the whole buffers space available to
all queues, causing excessive packet drops, and dose not respond to congestive
discards.

To see how this behavior can manifest itself originate two ICMP packet floods
from R6 and R1 towards R5 using a packet size of 100 and a timeout of 0. The
timeout value of zero means that the devices do not wait for an echo-reply before
sending its next echo. Additionally configure R5 so that it does not respond to
the echos so the return traffic doesn’t affect the flow.

R5:
access-list 100 deny icmp any host 155.1.45.5
access-list 100 permit ip any any
!
interface Serial 0/1
 ip access-group 100 in
 no ip unreachables

Rack1R1#ping 155.1.45.5 repeat 100000000 timeout 0
Rack1R6#ping 155.1.45.5 repeat 100000000 timeout 0

Rack1R4#show queueing interface serial 0/1
<snip>
 (depth/weight/total drops/no-buffer drops/interleaves) 43/8096/7289/0/0
 Conversation 30, linktype: ip, length: 104
 source: 155.1.146.1, destination: 155.1.45.5, id: 0x05E1, ttl: 254, prot: 1

 (depth/weight/total drops/no-buffer drops/interleaves) 21/16192/25458/0/0
 Conversation 3, linktype: ip, length: 104
 source: 155.1.146.6, destination: 155.1.45.5, id: 0xC38A, ttl: 254, prot: 1

Rack1R5#show policy-map interface serial 0/1
 Serial0/1

 Service-policy input: METER

 Class-map: IP_PREC1 (match-all)
 104422 packets, 22233791 bytes
 30 second offered rate 47000 bps
 Match: ip precedence 1

 Class-map: IP_PREC3 (match-all)
 353680 packets, 85227338 bytes
 30 second offered rate 68000 bps
 Match: ip precedence 3
<snip>

Note the huge number of drops due to the queue getting full. Also, note that
offered rates on R5 are not in a 1:2 proportion, even though the weights are set
to share the bandwidth in 1:2 ratio and the packet lengths are the same.

