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10.2 Weighted Fair Queuing (WFQ) 

 Configure the point-to-point Serial link between R4 and R5 with an 
interface clock rate and interface bandwidth of 128Kbps. 

 Set the output hold-queue size to 256. 

 Configure WFQ on the links with a length of 16 for the congestive discard 
threshold, 128 for the number of conversations, and 8 for RSVP 
reservable queues. 

 Set the tx-ring size to the minimal value to engage the WFQ as fast as 
possible. 

 Normalize the packet flows for the link by ajdusting the MTU so that each 
IP packet takes no more than 10ms to be sent. 

 

Configuration 

R4: 
interface Serial0/1 
 clock rate 128000 
 bandwidth 128 
 tx-ring-limit 1 
 fair-queue 16 128 8 
 hold-queue 256 out 
 ip mtu 156 
 
R5: 
interface Serial0/1 
clock rate 128000 
 bandwidth 128 
 tx-ring-limit 1 
 fair-queue 16 128 8 
 hold-queue 256 out 
 ip mtu 156 
 
Verification 

 Note 

WFQ uses an intelligent congestion management solution that provides “fair” 
sharing of the interface bandwidth between multiple traffic flows. A traffic “flow” 
(or conversation) is a unidirectional sequence of packets, defined based on the 
protocol type, the source/destination IP addresses, the source/destination ports 
numbers (when available), and partially on the IPv4 ToS byte value.  For 
example, an HTTP file transfer between two hosts represents one packet flow, 
while ICMP packets sent from one host to another represents a second.  
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The term “fair” on WFQ refers to the max-min fairness. The WFQ calculation 
procedure is as follows. 
 
First, divide the interface bandwidth equally between all flows.  For example if 
there are 10 flows, and 100Kbps of bandwidth, each flow gets 10Kbps.  If a flow 
demand is less than the “equal” share, e.g. a flow only needs 5Kbps instead of 
10Kbps, allocate the unneeded bandwidth equally among the remaining flows. 
If there are flows that demand more than the equal share, e.g. the equal share is 
10Kbps, but two flows demand 25Kbps and 20Kbps respectively, they will each 
get the equal, maximum, possible shares (e.g 19Kbps and 19Kbps ) but only if 
there are flows which demand less than the equal share. 
 
In this context max-min means that all flows first get the bare minimum, but the 
procedure tries to maximize each flow’s share if possible.  The concept of basic 
WFQ is very important to understand as many other congestion management 
techniques utilize it, such as Round Robin scheduling.  To reiterate, the key fact 
in WFQ is that the max-min scheduling allows the sharing of a flow’s unclaimed 
bandwidth between other flows. 
 
An individual flow in the queue may be more or less demanding than other flows. 
The “demanding” flow generates the higher bit-rate, either due to larger packet 
sizes or a higher packet per second rate.  For example compare a bulk FTP file 
transfer against telnet sessions or VoIP RTP streams.  Within the context of flow-
based sharing, it is also important to understand that a single host may generate 
multiple flows, such as with with P2P file-sharing applications or download 
“accelerators”, thus this particular host can obtain an “unfair” share of bandwidth 
compared to other hosts.  This, unfortunately, is a limitation of a classification 
scheme that based on simple flows, such as WFQ, which has no notion of “flow 
mask”. 
 
To enhance its scheduling logic, WFQ may assign a weight value to a flow.  The 
weight affects the minimum guaranteed share of bandwidth available to a flow. If 
there are N flows with weights w1, w2 ... wN, then flow K will get the minimum 
share of bandwidth where sK=(w1+w2+… wK+… wN)/wK – inversely 
proportional to its weight. The shares are relative, in the sense that the scheduler 
divides the available bandwidth in proportions: s1:s2:…sN. 
 
IOS implementation of WFQ assigns weights automatically based on the IP 
Precedence (IPP) value in the packet’s IP header. The formula is 
Weight=32384/(IPP+1), where IPP is the IP Precedence of the flow.  
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To understand the effect of the weight settings, imagine four flows with different 
IP Precedence values of zero, one, one and three.  
 
Step 1: 
Using the above formula for weight, we obtain: 
 
Weight(1) = 32384/(0+1) = 32384 
Weight(2) = 32384/(1+1) = 16192 
Weight(3) = 32384/(1+1) = 16192 
Weight(4) = 32384/(3+1) = 8096 
 
Step 2: 
 
Compute the sum of all weights: 
Sum(Weight(i),1…4) = 32384+16192*2+8096 = 72864 
 
Step 3: 
Compute the shares: 
 
Share(1) = 72864/Weight(1) = 72864/32384 = 2.25 
Share(2) = 72864/Weight(2) = 72864/16192 = 4.5 
Share(3) = 72864/Weight(3) = 72864/16192 = 4.5 
Share(4) = 72864/Weight(4) = 72864/8096 =  9 
 
The proportion is 2.25:4.5:4.5:9 = 1:2:2:4 – this is based on the “shifted” ip 
precedences: (IPP(i) + 1) 
 
Note that the numerator “32384” is arbitrary to those computations, meaning that 
you can use any value. What is important however is the proportion of “shifted” 
IP precedences. 

For bandwidth sharing to be correct, all flows must be adaptive. Adaptive means 
that a flow must respond to packet drops by slowing its sending rate. Non-
adaptive, aggressive flows may defeat the bandwidth sharing logic of WFQ by 
claiming all available buffer space and starving other flows. This is directly linked 
to the fact that all flows use shared buffer space when implementing WFQ (more 
on this later). 
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Specifically WFQ implements its fair sharing logic as follows.  First, the scheduler 
creates a group of flow queues for the interface, e.g. 256 “conversations”, based 
on a manual setting or an automatic calculation derived from the interface 
bandwidth.  When a new packet arrives for output scheduling, the scheduler 
applies a special hash function to the packet’s source/destination IP/Port values 
to yield the flow queue number.  This is why the number of queues is always a 
power of 2, because the hash the output value is somewhere between 0 and 2N. 
This procedure also means that multiple flows may share the same queue, called 
“hash collision”, when the number of flows is large. 
 
Each flow queue has a special virtual scheduling time assigned – the amount of 
“time” that would take to serialize the packets in the queue across the output 
interface. This “virtual time” is actually the total size of all packets stored in the 
flow queue scaled by the flow computational weight. 
 
Now imagine a new packet of size packet_size and IP precedence 
packet_ip_precedence arrives to its respective flow queue (hash queue): 
 
weight = 32384/(packet_ip_precedence +1) 
virtual_scheduling_time = queue_tail_time + packet_size*weight 
queue_tail_time = virtual_scheduling_time 
  
The “queue_tail_time” variable stores the previous virtual scheduling time for the 
flow. Note that the weight is inversely proportional to IP precedence, and thus 
more important packets have smaller virtual scheduling time value (WFQ thinks 
that it can serialize them “faster”). It is more appropriate to call this computational 
weight the “scaling factor” to avoid confusion with the classic meaning of weight.  
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Every time WFQ needs to take a packet out of all queues, it sorts all queues 
based on their virtual scheduling time (sorting is time-consuming). The scheduler 
selects the flow queue with minimum virtual scheduling time, sends a packet out 
and then decreases the respective queue_tail_time variable by packet’s size. In 
essence, this procedure tries to pull the short (smaller packets) flows traffic first.  
 
However, the following question remains open: if a new flow queue has just 
started, how should we initialize its queue_tail_time variable? Should we do that 
based on just the first packets size? That would result in every new flow having 
better chances of being scheduled then the older ones, with larger 
queue_tail_times! This is why WFQ stores a special variable called 
round_number shared by all queues. The round_number is the 
virtual_scheduling_time of the last packet sent down the physical line. When a 
flow queue is first initialized, its queue_tail_time is set equal to the latest 
round_number, thus making it “comparable” with the existing flow queues, and 
not letting it monopolize the physical line. The idea is to penalize the new flow by 
the amount of time other flows have already waited so far. 
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The next important point is the congestive discard threshold (CDT), which is a 
unique congestion avoidance scheme available with WFQ.  First you configure 
the total buffer space allocated to WFQ using the hold-queue <N> out 
command. The WFQ shares this buffer space between all flow queues. Any 
queue may grow up to the maximum free space, but as soon as its size reaches 
the CDT, WFQ drops a packet from a flow queue with the maximum virtual 
scheduling time (this may be some other queue, not the one that crossed the 
packet threshold). This way, WFQ penalizes the most aggressive flow and 
triggers a mechanism similar to random early detection’s (RED) prevention of 
tail-drop.  The fair-queue settings command is fair-queue <CDT> <N Flow 
Queues> <N Reservable Queues>. 
 
The number of reservable conversations (queues) is the number of flow-queues 
available to RSVP reservations (if any). Those flows have a very small weight 
value, and thus are preferred above any other flows. In addition to reserved flow 
queues, there are special “Link Queues”. The number of queues is fixed to 8, and 
they are numbered right after the maximum dynamic queue (e.g. if there are 32 
dynamic queues, “Link Queues” start at number 33). WFQ uses those queues to 
service routing protocol traffic and Layer 2 keepalives – everything that is critical 
to router operations and management. Each queue has a weight 1024, which is 
lower than any dynamic queue can get, so control plane traffic has priority over 
regular data traffic.  
 
Finally, note that the interface bandwidth setting does not influence the WFQ 
algorithm directly. It only prompts the WFQ command to pick up optimal 
parameters matching the interface bandwidth. The bandwidth, however, is used 
for admission control with RSVP flows. 
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For this particular task, verification can be performed as follows. 

Rack1R4#show queueing interface serial 0/1 
Interface Serial0/1 queueing strategy: fair 
  Input queue: 0/75/0/0 (size/max/drops/flushes); Total output drops: 2044 
  Queueing strategy: weighted fair 
  Output queue: 3/256/16/2044 (size/max total/threshold/drops)  
     Conversations  2/3/32 (active/max active/max total) 
     Reserved Conversations 0/0 (allocated/max allocated) 
     Available Bandwidth 96 kilobits/sec 
 
Rack1R4#show queueing fair  
Current fair queue configuration: 
 
  Interface           Discard    Dynamic  Reserved  Link    Priority 
                      threshold  queues   queues    queues  queues 
  Serial0/0           64         256      0         8       1   
  Serial0/1           64         32       1         8       1 
 

Changing the ip mtu for the interface in this task causes fragmentation at layer 
3, and normalizes the packet sizes for further testing.  With an additional 4 bytes 
of overhead for the layer 2 HDLC encapsulation, every frame sent out the link 
has a maximum size of 160 bytes (156 of IP plus 4 bytes of HDLC) .  With a 
physical clocking rate of 128000 bits per second, this means a 160 byte packet 
will take a maximum time of 10ms to serialize.  Adjusting serialization delay 
through fragmentation is covered in more detail later in this document. 

To verify how WFQ shares the interface bandwidth, configure the network as 
follows: 
 
1) Enable HTTP servers on R6 and R1 and set the root directory to “flash:”. 

2) Shutdown the Frame-Relay interface of R5 to ensure traffic from VLAN146 
takes the path across the serial link between R4 and R5. 

3) Configure R6 to mark traffic leaving the VLAN146 interface with an IP 
precedence of 1, and configure R1 to mark traffic leaving VLAN146 with an IP 
precedence of 3. 

4) Create a policy-map on R5 to match incoming IP precedence 1 and IP 
precedence 3 packets, and apply it inbound to interface Serial 0/1. We will use 
this policy to meter incoming traffic. 

5) Copy IOS images stored in the flash memory of R1 and R6 to SW2 and SW4’s 
“null:” destinations using HTTP.  

The resulting configuration is as follows. 
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R1: 
ip http server 
ip http path flash: 
! 
policy-map MARK 
 class class-default 
  set ip precedence 3 
! 
interface FastEthernet 0/0 
 service-policy output MARK 
 
R5: 
class-map match-all IP_PREC3 
  match ip precedence 3  
 class-map match-all IP_PREC1 
  match ip precedence 1  
! 
 policy-map METER 
  class IP_PREC1 
  class IP_PREC3 
! 
interface Serial 0/1 
 service-policy METER input 
 load-interval 30 
 clock rate 128000 
! 
interface Serial 0/0 
 shutdown 
 
R6: 
ip http server 
ip http path flash: 
! 
policy-map MARK 
 class class-default 
  set ip precedence 1 
! 
interface FastEthernet 0/0.146 
 service-policy output MARK 
 
Rack1SW2#copy http://admin:cisco@155.1.146.6/c2600-adventerprisek9-
mz.124-10.bin null: 
 
Rack1SW4#copy http://admin:cisco@155.1.146.1/c2600-adventerprisek9-
mz.124-10.bin null: 
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The configuration effectively generates two TCP flows across R4’s connection to 
R5. Since TCP is adaptive, the flows should eventually balance and start sharing 
bandwidth using their weights: 1+1 and 3+1, which is 2:4. This means file 
transfers from R1 to SW4 should have twice as much bandwidth as the file 
transfer from R6 to SW2. 

Rack1R5#show policy-map int serial 0/1 
 Serial0/1  
 
  Service-policy input: METER 
 
    Class-map: IP_PREC1 (match-all) 
      91618 packets, 17299811 bytes 
      30 second offered rate 41000 bps 
      Match: ip precedence 1  
 
    Class-map: IP_PREC3 (match-all) 
      330231 packets, 75523458 bytes 
      30 second offered rate 83000 bps 
      Match: ip precedence 3  
 
    Class-map: class-default (match-any) 
      58353 packets, 8839968 bytes 
      30 second offered rate 0 bps, drop rate 0 bps 
      Match: any 
 

Check the flow queues on R4 to see their WFQ parameters. Note that the 
average packet length is the same, and the inverse weight proportion is 
1/8096:1/16192 = 2:1 (the guaranteed shares of bandwidth for IP Precedence 1 
and IP Precedence 0 traffic). 

Rack1R4#show queueing interface serial 0/1 
<snip> 
  (depth/weight/total drops/no-buffer drops/interleaves) 7/16192/0/0/0 
  Conversation 20, linktype: ip, length: 580 
  source: 155.1.146.6, destination: 155.1.58.8, id: 0x6927, ttl: 254, 
  TOS: 32 prot: 6, source port 80, destination port 11009 
 
  (depth/weight/total drops/no-buffer drops/interleaves) 6/8096/0/0/0 
  Conversation 26, linktype: ip, length: 580 
  source: 155.1.146.1, destination: 155.1.108.10, id: 0x7BCF, ttl: 254, 
  TOS: 96 prot: 6, source port 80, destination port 11001 
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As mentioned above, non-adaptive flows, such as UDP/ICMP traffic floods, may 
oversubscribe the shared WFQ buffer space. This is due to their “greedy” 
behavior - a single flow tries to monopolize the whole buffers space available to 
all queues, causing excessive packet drops, and dose not respond to congestive 
discards. 

To see how this behavior can manifest itself originate two ICMP packet floods 
from R6 and R1 towards R5 using a packet size of 100 and a timeout of 0.  The 
timeout value of zero means that the devices do not wait for an echo-reply before 
sending its next echo.  Additionally configure R5 so that it does not respond to 
the echos so the return traffic doesn’t affect the flow. 

R5: 
access-list 100 deny icmp any host 155.1.45.5 
access-list 100 permit ip any any 
! 
interface Serial 0/1 
 ip access-group 100 in 
 no ip unreachables 
 
Rack1R1#ping 155.1.45.5 repeat 100000000 timeout 0 
Rack1R6#ping 155.1.45.5 repeat 100000000 timeout 0 
 
Rack1R4#show queueing interface serial 0/1 
<snip> 
  (depth/weight/total drops/no-buffer drops/interleaves) 43/8096/7289/0/0 
  Conversation 30, linktype: ip, length: 104 
  source: 155.1.146.1, destination: 155.1.45.5, id: 0x05E1, ttl: 254, prot: 1 
 
  (depth/weight/total drops/no-buffer drops/interleaves) 21/16192/25458/0/0 
  Conversation 3, linktype: ip, length: 104 
  source: 155.1.146.6, destination: 155.1.45.5, id: 0xC38A, ttl: 254, prot: 1 
 
Rack1R5#show policy-map interface serial 0/1 
 Serial0/1  
 
  Service-policy input: METER 
 
    Class-map: IP_PREC1 (match-all) 
      104422 packets, 22233791 bytes 
      30 second offered rate 47000 bps 
      Match: ip precedence 1  
 
    Class-map: IP_PREC3 (match-all) 
      353680 packets, 85227338 bytes 
      30 second offered rate 68000 bps 
      Match: ip precedence 3  
<snip> 
 

Note the huge number of drops due to the queue getting full. Also, note that 
offered rates on R5 are not in a 1:2 proportion, even though the weights are set 
to share the bandwidth in 1:2 ratio and the packet lengths are the same. 


