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Abstract

The purpose of this paper is to explore the characterizations of positive

numbers that can be written as the sum of two squares.
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Introduction

Given n ∈ N, we can say that n is a sum of two squares if there exists non-
negative x, y ∈ Z such that n = x2+y2. For example 25 is a sum of two squares
since,

25 = 42 + 32 = 52 + 02 =
(
22 + 12

) (
22 + 12

)
= (4 + 1)

2
+ (2− 2)

2

The example of 25 gives rise to a few interesting characterizations. Note
that 25 has more than one distinct sum of squares representation. Note also
that 25 is the product of two sum of squares also. In general, which numbers
can be respresented as a sum of two squares? If a number can be represented as
a sum of two squares, how many distinct representations does it have? Can the
problem be reduced to dealing only with primes? We will start by answering
the �rst question.

Classi�cation

Among all the integers from 1 to 100, the following are not representable as a
sum of two squares.

3 6 7 11 12 14 15 19 21 22 23
24 27 28 30 31 33 35 38 39 42 43
44 46 47 48 51 54 55 56 57 59 60
62 63 66 67 69 70 71 75 76 77 78
79 83 84 86 87 88 91 92 93 94 95
96 99

Compared to the integers that are representable as a sum of two squares.

1 2 4 5 8 9 10 13 16 17 18
20 25 26 29 32 34 36 37 40 41 45
49 50 52 53 58 61 64 65 68 72 73
74 80 81 82 85 89 90 97 98 100

After a quick investigation, it is clear that there is no set pattern as to which
integers have a sum of squares representation, but can we at least narrow down
our search?

Theorem 1: Consider x ∈ Z, then x2 ≡ 0 (mod4) or x2 ≡ 1 (mod4).

Proof: Take x ∈ Z. Suppose x is even. Then x = 2n, where n ∈ Z. Then,
x2 = 4n2 = 4

(
n2

)
≡ 0 (mod4). Suppose x is odd. So x = 2n+ 1, where n ∈ Z.

Then, x2 = (2n+ 1)
2
= 4n2 + 4n+ 1 = 4(n2 + n) + 1 ≡ 1 (mod4) 2

Theorem 2: If n ≡ 3 (mod4), then n is not a sum of two squares.
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Proof: Take n ∈ N such that n ≡ 3 (mod4). Recall that x2 ≡ 0,1 (mod4) for
all integers x. Thus for any two integers a and b, a2 + b2 ≡ 0, 1, or 2 (mod4).
So a2 + b2 ≡ 3 (mod4) is impossible. 2

Theorem 3: An odd prime number p is a sum of two squares i� p ≡ 1 (mod4)

Proof: Suppose we have an odd prime p = x2 + y2 for some non-negative
x, y ∈ Z. By Theorem 1, x2, y2 ∈ {0, 1} (mod4), thus p ∈ {0, 1, 2} (mod4) .
Because p is odd, it follows p ≡ 1 (mod4). Conversely, suppose p ≡ 1 (mod4).

Then we have the Legendre symbol
(

−1
p

)
= 1. Take r ∈ N with r2 ≡ −1 (modp).

De�ne f (x, y) = x+ ry and N = b√pc. Note that

N <
√
p < N + 1,

as
√
p /∈ N. Consider all pairs (x, y) with 0 ≤ x ≤ N and 0 ≤ y ≤ N . There

exist (N + 1)
2
> p such pairs. If we then consider the multiset of all f (x, y) for

such x, y, then by the Pigeonhole Principle, two such pairs (x1, y1) 6= (x2, y2)
for which f (x1, y1) ≡ f (x2, y2) (modp). Hence,

x1 + ry1 ≡ x2 + ry2 (modp)

x1 − x2 ≡ −r (y1 − y2)

a ≡ −rb (modp) ,

where a = (x1 − x2) and b = (y1 − y2). Hence a2 ≡ −b2 (modp) since
r2 ≡ −1 (modp), giving us p | a2 + b2. But |a| ≤ N and |b| ≤ N , giving

0 < a2 + b2 ≤ 2N2 < 2p. Thus a2 + b2 = p. 2

Theorem 4: If n,m are positive integers with a sum of two squares represen-
tation, then the product nm can be written as a sum of two squares.

Proof: Suppose n = x2 + y2 and m = w2 + z2, where w, x, y, z ∈ Z. Then,

nm =
(
x2 + y2

) (
w2 + z2

)
= x2w2 + x2z2 + y2w2 + y2z2

= x2w2 + x2z2 + 2xyzw − 2xyzw + y2w2 + y2z2

=
(
x2w2 + 2xyzw + y2z2

)
+
(
x2z2 − 2xyzw + y2w2

)
= (xw − yz)2 + (xz + yw)

2

2
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Theorem 5: If 3 | x2 + y2, then 3 | x and 3 | y.

Proof: By contrapositive. Assume that 3 - x or 3 - y. WOLOG assume x is
not divisible by 3. Then, x = 3k + 1 or x = 3k + 2 for k ∈ Z. So, (3k + 1)2 =

9k2+6k+1 = 3(3k2+2k)+1 ≡ 1 (mod3). Similarly, (3k + 2)
2
= 9k2+12k+4 =

3(3k2 + 4k) + 4 ≡ 1 (mod3). Thus, x2 ≡ 1 (mod3) and y2 ≡ 0, 1 (mod3) . So
x2 + y2 ≡ 1, 2 (mod3), thus not divisible by 3.2

Theorem 6: If n ≡ 3 (mod9) or n ≡ 6 (mod9), then n is not the sum of two
squares.

Proof: By contradiction. Assume that n = x2 + y2 and n ≡ 3, 6 (mod9).
Therefore, 3 | n. So by Theorem 5 we have that 3 | x and 3 | y. Thus

x2 = (3k)
2
= 9k2 ≡ 0 (mod9) and y2 = (3l)

2 ≡ 0 (mod9) for some k, l ∈ Z. So
x2 + y2 ≡ 0 (mod9). A contradiction to the assumption n ≡ 3, 6 (mod9) . 2

Theorem 7: If n is a positive integer such that every prime factor of n that
is congruent to 3 modulo 4 appears with an even power, then n has a sum of
two squares representation.

Proof: Suppose n = 2α0pα1
1 . . . pαk

k qβ0

1 . . . qβr
r where each pi ≡ 1 (mod4) and

each qj ≡ 3 (mod4) with βj even. 2 is clearly a sum of squares, namely 2 =
12 + 12. Each pi is a sum of two squares, thus pαi

i is also a sum of two squares

by Theorem 3. Because each βj is even, can write βj = 2β
′

j . We then have

q
βj

j =

(
q
β
′
j

j

)2

+ 02, so each term can written as the sum of two squares. So

together using Theorem 4 it follows that the product n = 2α0pα1
1 . . . pαk

k qβ0

1 . . .
qβr
r is also a sum of two squares. 2

Other Properties

Now that we have classi�ed what integers can be represented as a sum of two
squares, the next questions might be, are they unique? Given a sum of two
squares for an integer, can we produce more, and if we can, how many more?
Next we will explore how to �nd additional representations of an integer. I
won't present any new theorems, but instead will give some insight into what
methods to use to �nd additional sum of two squares. The use of Guassian
integers will be required.

Suppose we have an integer c with the sum of two squares a2 + b2. Then
writing c as the sum of two squares, c = a2 + b2 , is equivalent to factoring c as
c = (a+ bi) (a− bi) over the Gaussian integers. So to �nd all possible factors
of c, we just need to solve the problem for each prime factor of c of the form
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4k + 1. Then we combine each factor in each possible way to get all our sums
of two squares.

Examples: Suppose n = 85, which factors as 5 · 17. We have 5 = 22 + 12 =
(2 + i) (2− i), and 17 = 42 + 12 = (4 + i) (4− i). We can then write 85 as a
sum of two squares using the following method:

• Taking (2 + i) (4 + i) = 7 + 6i tells us 85 = 72 + 62.

• Taking (2 + i) (4− i) = 9 + 2i tells us 85 = 92 + 22.

Note that any other combination is redundant since we are squaring the result.
Consider a more complicated example, n = 1170, which factors as 2 · 32 · 5 · 13.
Note that 3 can not be written as sum of two squares, so must treat 32 as
(3 + 0i) (3− 0i). Next, 2 = 12 + 12 = (1 + i) (1− i). We have 5 = 22 + 12 =
(2 + i) (2− i). Finally, 13 = 32 + 22 = (3 + 2i) (3− 2i). Consider:

• Taking (1 + i) (3 + 0i) (2 + i) (3 + 2i) = −21 + 27i tells us 1170 = 212 +
272.

• Taking (1 + i) (3 + 0i) (2 + i) (3− 2i) = 33 + 9i tells us 1170 = 332 + 92.

Again note that any other combination yields the same results. The di�culty
in �nding a sum of two squares lies in the factoring.
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