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Abstract

Swiss mathematician Leonhard Euler made numerous discoveries in
the �eld of analytic number theory. In his 1737 thesis, Euler introduced
what would come to be known today as the Euler Product Formula. He
would go on to prove that this product was in fact a formula for the
Riemann zeta function. Arguably one of the hottest topics in the �eld
of modern number theory is the Riemann zeta function. Though the
zeta function was �rst known to Euler, it was his German neighbor to
the north Bernhard Riemann who studied this function at lengths. It
was in his 1859 paper that Riemann introduced an explicit formula for
the number of primes up to a pre-determined limit. The caveat of this
function being that it depended on knowing the values for which the zeta
function was zero. Riemann conjectured that all (non-trivial) zeroes lived
on the critical strip at x = 1

2
. Still an open problem today and one

who's solution comes with a large reward. Our focus will be on deriving
Euler's Product Formula from the Riemann zeta function. The paper will
conclude with a brief example.
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1 Introduction

In the early 1300's, a mathematician by the name of Nicolas Oresema showed
that the harmonic series used today is in fact divergent. Euler knew this and
wondered if the harmonic series involving only primes (1 + 1

2 + 1
3 + 1

5 + 1
7 + ...)

was also divergent. He began studying powers of these primes and would soon
formulate his Product Formula. Much of anayltic number theory relies on one
beautiful formula:

ζ(s) =
∞∑
n=1

1
ns =

∏
primes p

(1− 1
ps )
−1

Now that we have our formula, how is it that Euler came up with these
ideas? It was clear to him that the classic harmonic series diverged, but could
this new harmonic series composed only of primes also diverge? Euler had an
incredibly intutive idea about how he would prove whether this in�nte sum had
a �nite answer or not. He would break up the classic harmonic function into
two seperate summations. The �rst summation made up of the recipricols of
all composite numbers and the second summation being the recipricols of all
primes, i.e.,

[ 14 + 1
6 + 1

8 + 1
9 + ...] + [1 + 1

2 + 1
3 + 1

5 + 1
7 + ...]

The goal was to show that the �rst summation had a �nite answer and the
cause of the divergence was laced within the second summation. Though this
problem turned out not to be so simple. Consider the Grandi series(named after
the Italian mathematician Guido Grandi):

S = 1− 1 + 1− 1 + 1− 1 + 1− 1 + 1− 1 + 1− .... =
∞∑
n=0

(−1)n

Then we can group this series in two di�erent ways, i.e.,

S = (1− 1) + (1− 1) + (1− 1) + (1− 1) + ... or

S = 1 + (−1 + 1) + (−1 + 1) + (−1 + 1) + (−1 + 1) + ...

Then it is clear that the �rst summation should equal to 0, while the second
summation should be 1. This is a classic issue that arises when trying to break up
in�nite sums. This would prove to be a hurdle in his e�ort to solve this problem,
but this is Euler we are talking about, so of course he found a newfangled way
to solve this problem.

2 The zeta function

With this new harmonic series composed only of primes in mind, Euler decided
to look at a new sum that was closely related. He began by taking a a complex
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number s such that Re(s) was just slightly larger than 1. He then took the old
harmonic series and made a new function using this s-value, namely:

[1 + 1
2 + 1

3 + 1
4 + 1

5 + 1
6 + ...]⇒[1 + 1

2s + 1
3s + 1

4s + 1
5s + 1

6s + ...]

which would come to be known as the famous Riemann zeta function ζ(s).When
Re(s) > 1, Euler knew that this series converged (today we can prove conver-
gence by the p-series test), so it was now possible to break up this series into
two in�nite pieces, i.e.,

ζ(s) = [ 1
4s + 1

6s + 1
8s + 1

9s + ...]+[1 + 1
2s + 1

3s + 1
5s + 1

7s + ...]

His new idea was to show as Re(s)→ 1, the summation on the right was in
fact divergent. In this proof, Euler would come to discover his Product Formula,
and now we will derive his Product Formula from the zeta function.

3 Deriving the Euler Product Formula from the

zeta function

This proof will use a modifed sieve method. Let Re(s) > 1 and consider the

Riemann zeta function ζ(s) =
∞∑
n=1

1
ns .

Then ζ(s) = 1 + 1
2s + 1

3s + 1
4s + 1

5s + 1
6s + ... (1)

Multiply both sides by 1
2s to get,

1
2s ζ(s) =

1
2s + 1

4s + 1
6s + 1

8s + 1
10s + ... (2)

We can now subtract this new equation from the original to get,

ζ(s)− 1
2s ζ(s) = (1− 1

2s )ζ(s) = 1 + 1
3s + 1

5s + 1
7s + 1

9s + ... (1)− (2)

So we have removed all multiples of two from our original equation.

We can take our new equation and multiply by a factor of 1
3s to get,

1
3s (1−

1
2s )ζ(s) =

1
3s + 1

9s + 1
15s + 1

21s + 1
27s + ... (3)

Again if we subtract this equation from the original zeta function we get,

ζ(s)− 1
3s (1−

1
2s )ζ(s) = (1− 1

3s )(1−
1
2s )ζ(s) = (1)− (3)

= 1 + 1
5s + 1

7s + 1
11s + 1

13s + ...
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Thus we have removed all factors of both two and three from our original
equation. We can repeat this process again, multiplying this new equation by
1
5s on both sides to get,

1
5s (1−

1
3s )(1−

1
2s )ζ(s) =

1
5s + 1

25s + 1
35s + 1

55s + 1
65s + ... (4)

Subtract this new equation from the original zeta function to get,

ζ(s)− 1
5s (1−

1
3s )(1−

1
2s )ζ(s) = (1− 1

5s )(1−
1
3s )(1−

1
2s )ζ(s) = (1)− (4)

= 1 + 1
7s + 1

11s + 1
13s + 1

17s + ...

So we have removed all factors of two, three, and �ve. Now it should be
clear that we can repeat this process iteratively for 1

pswhere p is prime. The
result is...

...(1− 1
17s )(1−

1
13s )(1−

1
11s )(1−

1
7s )(1−

1
5s )(1−

1
3s )(1−

1
2s )ζ(s) = 1

Dividing both sides by ζ(s) results in,

...(1− 1
17s )(1−

1
13s )(1−

1
11s )(1−

1
7s )(1−

1
5s )(1−

1
3s )(1−

1
2s ) =

1
ζ(s)

⇒ζ(s) = 1
(1− 1

2s )(1− 1
3s )(1− 1

5s )(1− 1
7s )(1− 1

11s )(1− 1
13s )(1− 1

17s )...
=

∏
primes p

(1− 1
ps )
−1

�

4 An example

Let s = 2 and consider ζ(s). Then,

ζ(2) =
∞∑
n=1

1
n2 = 1 + 1

4 + 1
9 + 1

16 + 1
25 + 1

36 + ...

Goal is to show ζ(2) = π2

6 .

Proof (Euler 1735):

Consider the Maclaurin series for sin(πx).

sin(πx) = πx= (πx)3

3! + (πx)5

5! −
(πx)7

7! + ... =
∞∑
n=1

(−1)n+1 · π
2n+1x2n+1

(2n+1)! (1)

It is important to note here that the coe�cient of x3 is −π
3

6 . Recall that
the Fundamental Theorem of Algebra tells us that we can always factor a �nite
polynomial into a linear product of its roots. But can we do this for in�nite
polynomials? Note that the complex-valued function sin(πx) is entire, in other
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words, our function is holomorphic at all �nite points in the whole complex
plane. This is important because the Weierstrass factorization theorem says
that entire functions can be represented by a linear product involving their
zeroes(even in�nite polynomials). Let us factor our expansion for sin(πx) using
the zeroes of sin(πx) to get,

sin(πx) = πx(1− x)(1 + x)(1− x
2 )(1 +

x
2 )(1−

x
3 )(1 +

x
3 )(1−

x
4 )(1 +

x
4 )...

Recall the di�erence of squares formula that says (a − b)(a + b) = a2 − b2.
So we can rewrite our factorization of sin(πx) as,

sin(πx) = πx(1− x2)(1− x2

4 )(1− x2

9 )(1− x2

16 )... (2)

Using our new factorization (2), if we want to get an x3 term, we must
multiply the initial πx by one single term in the factorization that is of the form
−x2

n2 . After multiplying each factor by x, we can pull out a x3 from each term
to get,

sin(πx) = πx− πx3(1 + 1
4 + 1

9 + 1
16 + ...) + ... (3)

Note that the rest of the expansion is irrelevant as we now have a new ex-
pression for our x3 coe�cient. Recall that in our original expansion (1) the

coe�cient for x3is −π
3

6 . But in our new expansion (3), we have that the coe�-
cient is −π(1+ 1

4 +
1
9 +

1
16 + ...). Recall that ζ(2) = (1+ 1

4 +
1
9 +

1
16 + ...). So the

coe�cient for x3 can be written as −πζ(2). Now we can set the two coe�cients
equal to each other and solve for ζ(2).

We have −πζ(2) = −π3

6 .

⇒ζ(2) = −π3

6 ·
−1
π = π2

6 .

�
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