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Abstract

Given an arithmetic function, one can establish its Dirichlet series. In

this paper we will examine four familiar arithmetic functions and their

corresponding Dirichlet series. The aim is to represent these series as

products and ratios of the Riemann zeta function.
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Arithmetic Functions

Definition 1.1 A function f : N→ C is called an arithmetic function. An
arithmetic function f is called multiplicative if it satis�es the relation:

f(n1n2) = f(n1)f(n2) ∀n1, n2 ∈ N : (n1, n2) = 1

If the relation holds for all n1, n2 ∈ N (without the restriction (n1, n2) = 1),
then f is called completely multiplicative.

Examples

1) The M �îbius function µ : N→ C is de�ned by

µ(n) =


1 if n = 1

0 if n is not square free

(−1)r if n = p1p2...pr

2) The divisor function τ : N→ C is the number of divisors of n ∈ N, de�ned
by

τ(n) =
∑
d|n

1

3) The sum of divisors function σ : N→ C is the sum of all the divisors of
n ∈ N, de�ned by

σ(n) =
∑
d|n

d

4) The Euler totient function φ : N→ C is the number of integers ≤ n that
are co-prime to n, given by

φ(n) = # {1≤m≤n : (m,n) = 1.}

Note that each function is multiplicative, but none are completely multiplica-
tive.

De�nition 1.2 Given an arithmetic function f(n), the series

Df (n) =
∞∑
n=1

f(n)
ns = f(1)

1s + f(2)
2s + f(3)

3s + . . .
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is called the Dirichlet series associated with f. Consider the arithmetic func-
tion f(n) = 1. Then its Dirichlet series is,

D1(n) =
∞∑
n=1

f(n)
ns =

∞∑
n=1

1
ns = ζ(s) =

∏
p prime

(
1− 1

ps

)−1
De�nition 1.3 Given two arithmetic functions f and g, theDirichlet convolution
f ? g is the arithmetic function de�ned by

(f ? g) (n) =
∑
d|n
f(d)g(nd ) (n ∈ N)

Note also that Df?g = DfDg

Dirichlet Series

The M�îbius function Recall the M�îbius function µ(n) from Example 1.
Then its Dirichlet series is,

Dµ(s) =
∞∑
n=1

µ(n)
ns

Consider the Euler product

F =
∞∏
k=1

(1− 1
psk
) = (1− 1

ps1
)(1− 1

ps2
)(1− 1

ps3
)(1− 1

ps4
)(1− 1

ps5
)(1− 1

ps6
) . . .

If we continuously multiply out the terms of F , we will get

F = (1− 1
ps1
)(1− 1

ps2
)(1− 1

ps3
)(1− 1

ps4
)(1− 1

ps5
)(1− 1

ps6
) . . .

= (1− 1
ps1
− 1

ps2
+ 1

ps1p
s
2
)(1− 1

ps3
)(1− 1

ps4
)(1− 1

ps5
)(1− 1

ps6
) . . .

= (1− 1
ps1
− 1

ps2
− 1

ps3
+ 1

ps1p
s
2
+ 1

ps1p
s
2
+ 1

ps2p
s
3
− 1

ps1p
s
2p

s
3
)(1− 1

ps4
)(1− 1

ps5
)(1− 1

ps6
) . . .

...

= 1− ( 1
ps1

+ 1
ps2

+ ...) + ( 1
ps1p

s
2
+ ...+ 1

ps1p
s
3
+ 1

ps2p
s
3
+ ...)− ...

= 1−
∑
0<i

1
psi

+
∑

0<i<j

1
psip

s
j
−

∑
0<i<j<k

1
psip

s
jp

s
k
+

∑
0<i<j<k<l

1
psip

s
jp

s
kp

s
l
− ...
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Given any summation
∑ ±1

p1p2...pr
, when r is odd, the numerator is−1, whereas

when r is even, the numerator is +1. Note also that there are no terms that
contain a squared prime, thus we really have

Dµ(s) =
∞∑
n=1

µ(n)
ns = F =

∞∏
k=1

(1− 1
psk
) = ζ−1(s)

Thus the Dirichlet series of the m�îbius function is just the reciprocal of the
Riemann zeta function.

The divisor function Recall the divisor function τ(n) from Example 2. Con-
sider its Dirichlet series,

Dτ (s) =
∞∑
n=1

τ(n)
ns

Next consider the Dirichlet product where f(n) = 1 and g(n) = 1, namely

f ? g(n) = 1 ? 1(n) =
∑
d|n

1(d)1(nd ) =
∑
d|n

1 = τ(n)

thus τ(n) = 1?1(n). So to calculate the Dirichlet series of the divisor function,
we can instead consider the new Dirichlet series,

Dτ (s) =
∞∑
n=1

τ(n)
ns =

∞∑
k=1

1
ns ·

∞∑
n=1

1
ns = ζ(s) · ζ(s)=ζ2(s)

Consider instead the Euler product of Dτ (s),

Dτ (s) =
∏
p

(
1 + τ(p)

ps +
τ(p2)
p2s + ...+

τ(pk)
pks + ...

)

=
∏
p

(
1 + 2

ps + 3
p2s + ...+ k+1

pks + ...
)

=
∏
p

1
(1−p−s)2 (Using the power series (1− x)2 =

∞∑
k=0

(k + 1)xk) ⇒

Dτ (s) =
∏
p

1
(1−p−s)2

= ζ (s) · ζ (s) = ζ2 (s)

So it is clear that the Dirichlet series Dτ (s) is ζ
2 (s).
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Sum-of-divisors function Consider the Dirichlet series of the function σ(n)
from Example 3.

Dσ (s) =
∞∑
n=1

σ(n)
ns

Consider the arithmetic functions f (n) = n and g (n) = 1. Then

f ? g (n) =
∑
d|n
f (d) g

(
n
d

)
=
∑
d|n
d ∗ 1 =

∑
d|n
d = σ (n)

So σ (n) is the Dirichlet product of the unit function 1 (n), and the identity
function j (n), so using properties of the Dirichlet product we have,

Dσ (s) = D1 (s) ·Dj (s)

= ζ (s) ·
∞∑
n=1

j(n)
ns

= ζ (s) ·
∞∑
n=1

n
ns

= ζ (s) ·
∞∑
n=1

1
ns−1

= ζ (s) · ζ (s− 1)

Thus the Dirichlet series for σ (n) is ζ (s) · ζ (s− 1).

Euler's totient function Consider the Dirichlet series of the function φ (n)
from Example 4.

Dφ (s) =
∞∑
n=1

φ(n)
ns

Then we can derive the Dirichlet series using the following Euler product,

Dφ (s) =
∏
p

(
1 + φ(p)

ps +
φ(p2)
p2s + ...+

φ(pk)
pks + ...

)

=
∏
p

(
1 + p−1

ps + p2−p
p2s + ...+ pk−pk−1

pks + ...
)
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=
∏
p

(
1 + p−1

ps ·
1

1−p1−s

)
(by summing the geometric progression)

=
∏
p

(
1−p−s

1−p−(s−1)

)

= ζ(s−1)
ζ(s)

So the Dirichlet series for Euler's totient function φ(n) is ζ(s−1)
ζ(s) .
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