
Gradient Descent in MATLAB

Storm Frazier

Numerical Analysis

Abstract

Gradient descent is a �rst-order optimization algorithm that runs it-
eratively to �nd the minimum of a (cost) function. In this algorithm we
will begin with a strictly convex function of two variables. In order to �nd
a local minimum of our function using gradient descent, we need an intial
guess. Then, one takes steps proportional to the negative of the gradient
(or approximate gradient) of the function at the initial guess. The new
current point will be our next guess and we continue this process itera-
tively until we (hopefully) reach our local minimum. Imagine standing
near the top of a mountain and looking down at a lake at the base of the
mountain. In order to �nd the shortest path down to this lake, we should
walk opposite of the gradient at each step we take down the mountain.

1 About the gradient descent method

It has long been observed that if we have some multivariable function F, and
this function is well de�ned and di�erentiable in an open neighborhood of some
point x. Then our function F decreases the fastest if one travels in the direction
opposite of the gradient. So it follows that given a convex function F, we can
de�ne a recursive sequence that will be our gradient descent method:

αn+1 = αn − γ ∗ ∇F (αn)

Where αn is our guess, γ is de�ned to be our step size(usually very small),
and �nally ∇F (αn) is our gradient at our guess. The algorithm boils down to
taking a point and taking a small step in the direction opposite of the gradient.
Next we need to de�ne some stopping criteria. This can be done in a multitude
of ways. The �rst method we use is to de�ne some error tolerance ε, and stop
when ‖∇F (αn)‖2 < ε. We know the norm of the gradient is zero at our solution,
but because this is a numerical approximation, we just need to �nd when we
are very close to zero. So we de�ne ε to be small and stop our algorithm when
we are su�ciently close. But what happens if our function diverges? Then our
norm will never get below our desired tolerance, so we must de�ne some number
of maximum allowed iterations. Now we can guarantee our algorithm won't get
stuck in an in�nite loop.

1



2 Real examples

Lets begin with an easy convex multivariable function F (x, y) = 2x2+xy+3y2.
Then ∇F (x, y) = (4x + y, x + 6y) and it is clear that the minimum of this
function occurs at (0,0). So lets begin with an initial guess x0= (5,5) and
with step size γ = 0.1. Then we can calculate the �rst few terms using our
recursive alogorithm: x1 = (2.5, 1.5): x2 = (1.35, 0.35): x3 = (.775, .005):
x4 = (.4645,−.0755): x5 = (.2862,−.0767): ... x20 = (0.000542, 0.000224) :
Now it is clear that we are steadily moving toward our minimum at (0,0) and
after only 20 iterations we are already within 1e−3 of the true value.

Now lets see what happens if we try a non-convex function. Consider
F (x, y) = 5x2+xy−10y2. Then ∇F (x, y) = (10x+y, x−20y). Now it happens
that we have a saddle point(both a max and a min) at (0,0), so we will see
what happens when our algorithm is told to both run toward and away from
the origin. Consider the initial guess x0= (1,1) with γ = 0.1. Then using our
recursive algorithm we can calulate the �rst few terms:

x1 = (−0.1, 2.9): x2 = (−0.29, 8.71): x3 = (−2.616, 78.56): x4 = (−7.856, 236):
Well it looks like the alogirthm wants to run away from the origin(and quickly).
So it is clear that the method does not work well when our function is not
strictly convex. So we really need a nice function to work with, which is not
usually what we are given in the real world!

3 Gradient descent in MATLAB

Now that we know the ins and outs of how gradient descent works(or doesn't
work), lets see how we can create a MATLAB program to run our algorithm.

We begin by creating a while loop with our stopping criteria. We check the
norm of our gradient, the shift between terms, and the number of iterations.
If any of these three criteria are not met, the algorithm stops and returns the
last value that was calculated. The function follows our method from earlier,
namely: xnew = x− gamma ∗ h, where x is our guess, gamma is our step size,
and h is the gradient at our guess. This process repeats iteratively until one of
the criteria is breached. Each point is plotted on our maps in order to get a

2



sense of how our algorithm is moving.

4 How to use the gradient descent method in

MATLAB

Now we can begin with the gradient descent function in MATLAB. Begin by
choosing a nice convex function. Next, the user MUST hardcode a gradient
matrix in the altgrad.m �le before using this method. In an attempt to allow
anyone with MATLAB to use this method, we needed to avoid using any pack-
ages that did not come with MATLAB. So without the symbolic toolbox, the
user must de�ne a gradient matrix themselves. A very quick and easy process
and after creating and saving the gradient matrix, the user can now run the alo-
gorithm. To call our function, we simply call gradient_descent(func, gamma,
delta, maxiterations, shift, varargin). Where:

func - An anonymous convex function of two variables x1 and x2.
gamma - Step size.
delta - Our stopping criteria or tolerance.
maxiterations - The maximum allowed iterations (to avoid in�nite loops).
shift - A shift value to break out of loops.
varargin - Our initial guess, must be in the form [x y]' (Note the ' ).
The function will then spit out a two variable answer that is an approxima-

tion of a local minimum, as well as two plots to help visualize the algorithm.

5 Step by step example

Instructions:
Step 1: Open both gradient_descent.m and altgrad.m

Step 2: De�ne a two variable anonymous convex function.

Step 3: De�ne your gradient matrix in altgrad.m and save it.

Step 4: Call the gradient descent function with the appropriate input vari-
ables.

Step 5: Hit Enter and wait for results.

3



We get our numerical approximation to a local minimum as an output as
well as two maps to help visualize the algorithm. The �rst map is a 3-D plot
that can help visualize where the minimum is and our second plot is a contour
map that helps visualize each step. Both plots include the path of the algorithm.
This is the extent of the algorithm. The user can go in and adjust some of the
bounds on the maps for other functions if they are unhappy with the current
plots.

6 More examples

Here is a list of a few examples that are easy to plug in and run:
Example 1:
f=@(x1,x2) 5*x1.^2 + x1.*x2 + 10*x2.^2
g = [10*x(1) + x(2) x(1)+20*x(2)];
Example 2(divergent):
f=@(x1,x2)x1.^2 + x1.*x2 - 3*x2.^2
g = [2*x(1) + x(2) x(1)-6*x(2)];

7 Conclusion

Gradient descent is one of the most popular optimization methods, used in both
machine learning and deep learning today. Though quite easy to understand
with only two variables, things can get quite tricky when we introduce a function
with thousands of variables. Hardly any real life scenario can be mapped using

4



only two variables, so the challeges facing gradient descent today arise when we
have functions that are incomprehensibly large. Gradient descent comes with
two primary downfalls. The �rst being that the algorithm is great at �nding
local minimum, and terrible at �nding global minimum. The next is that we
are restricted to convex functions. This really limits the range of functions we
can actually use gradient descent on, so being able to resolve these two issues
would do wonders for the machine learning community.

5


