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Abstract

A focal point of Dynamical Systems is the study of topological conjugacies between functions. The
reason that a topological conjugacy is important is if the dynamics of one function can be solved, then
the dynamics of any topologically conjugate function follow immediately. We will begin by studying
the topological conjugacy between the logistic map and the tent map. Then we will introduce the
concept of a semi-conjugacy and show a few examples using MATLAB of how erratic these functions
can get.
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1 Topological Conjugacy

Definition.

• A function f : X 7→ Y is injective if:

– f(a) = f(b) then a = b

– f maps distinct elements to distinct elements

• A function f : X 7→ Y is surjective if:

– For all y ∈ Y there exists x ∈ X such that f(x) = y

– Every element in Y has at least one element in X that maps to it under f .

Definition. A function φ : X 7→ Y is a homeomorphism if:

• φ is injective

• φ is surjective

• φ is continuous

• φ−1 is continuous

Definition. Let F : X 7→ X and G : Y 7→ Y be two functions. We say that F and G are topologically
conjugate if there exists a homeomorphism h : X 7→ Y such that:

h ◦ F = G ◦ h

Proposition 1 On the unit interval [0, 1], the logistic map G(x) = 4x(1− x) is topologically conjugate to
the tent map T (x) = 1− 2|x− 1

2
|. Furthermore, the conjugacy is h(x) = (1− cosπx)/2

Proof: To verify that G and T are topologically conjugate, it suffices to show that h(T (x)) = G(h(x))
for all x ∈ [0, 1]. We will first show that it works for 0 ≤ x ≤ 1

2
and then for 1

2
≤ x ≤ 1. Consider x ∈ [0, 1],

then:

G(h(x)) = 4h(x)(1− h(x))

= 4(
1− cosπx

2
)(

1 + cosπx

2
)

= 1− cos2πx
= sin2πx

(1)

Now we can make use of the fact that T (x) = 2x for 0 ≤ x ≤ 1
2
. So, for x ∈ [0, 1

2
]:

h(T (x)) =
1− cosπT (x)

2

=
1− cos2πx

2
= sin2πx

(2)
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Where the last equality holds by the double angle formula for cosine. Thus h(x) does define a topological
conjugacy on 0 ≤ x ≤ 1

2
. Next we need to check for 1

2
≤ x ≤ 1. We can make use of the fact that

T (x) = 2− 2x for 1
2
≤ x ≤ 1. So, for x ∈ [1

2
, 1]:

h(T (x)) =
1− cosπT (x)

2

=
1− cosπ(2− 2x)

2

=
1− cos(2π − 2πx)

2

=
1− cos(−2πx)

2

=
1− cos(2πx)

2
= sin2(πx)

(3)

We have that h(T (x)) = G(h(x)) for all x ∈ [0, 1], therefore G and T are topologically conjugate with
conjugacy h(x) = (1− cosπx)/2. This completes the proof.

Definition. Let F : X 7→ X and G : Y 7→ Y be two functions. We say that F and G are topologi-
cally semi-conjugate if there exists a surjection h : X 7→ Y such that:

h ◦ F = G ◦ h

Recall the the tent map,

T (x) =

{
2x 0 ≤ x ≤ 1

2

2− 2x 1
2
≤ x ≤ 1

and consider it composed with itself to get,

T ◦ T (x) = T2(x) =


4x 0 ≤ x ≤ 1

4

2− 4x 1
4
≤ x ≤ 1

2

4x− 2 1
2
≤ x ≤ 3

4

4− 4x 3
4
≤ x ≤ 1

We can keep composing the tent map with itself to generate new functions. These iterations of the tent
map are strikingly similar to the sawtooth wave. The main goal of this next section will be to find a
semi-conjugacy h(x) from T2(x) to T (x) and observe how chaotic that map looks when graphed. We will
then look at more iterations of the tent map and see how chaotic the graphs of the semi-conjugacies from
Tn(x) to T (x) can get. Because h(x) is not going to be a smooth function, we will approximate the function
numerically using MATLAB.
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Definition We can describe the orbits of the tent map using their ”left-right” itineraries: for each
c ∈ [0, 1], we assign a sequence of L’s and R’s by writing ’L’ if the nth point of the orbit of c is in [0, 1

2
]

and ’R’ if the nth point of the orbit of c is in (1
2
, 1].

Proposition 2 Given a sequence X = (x0 x1 x2 x3 ...) of L’s and R’s there is a unique point α ∈ [0, 1] such
that under the tent map, xm = L implies Tm(α) ∈ [0, 1

2
] and xm = R implies Tm(α) ∈ (1

2
, 1]. Furthermore,

two different initial points cannot have the same itinerary, i.e. for α, β ∈ [0, 1] with α 6= β, the itineraries
of α and β under the tent map will be different.

Example 2 Consider ξ = 1
4

and X = (ξ, T (ξ), T 2(ξ), T 3(ξ), T 4(ξ), T 5(ξ)...).

Then,
1
4
7→ L

T (1
4
) = 1

2
7→ L

T 2(1
4
) = 1 7→ R

T 3(1
4
) = 0 7→ L

T 4(1
4
) = 0 7→ L

T 5(1
4
) = 0 7→ L

T 6(1
4
) = 0 7→ L

.

.

.

T n(1
4
) = 0 7→ L

So the itinerary of ξ under the tent map is X = (L L R L L L L L . . .)

Suppose now we want to modify our definition and example. Instead of looking at iterations of the
tent map T (x), lets look at iterations of the tent map composed with itself T2(x). And looking at the
itinerary of a point x0 ∈ [0, 1], assign L to the nth point of the orbit if T n

2 (x0) ∈ [0, 1
4
] and assign R to the

nth point of the orbit if T n
2 (x0) ∈ (1

4
, 1]. Our next goal is to take an arbitrary point in [0, 1] and find its

itinerary under T2(x). Then we will find what point in [0, 1] is mapped to that itinerary under the normal
tent map T (x). This process will create our topological semi-conjugacy h(x) between T2(x) and T (x). Of
course we will have to do this numerically so there will be some small error in our function.
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Example 3 Take x0 = 1
4

and its itinerary under T2(x) is X = (L R L L L L L L L . . .). We want
to find what point y0 ∈ [0, 1] has that same itinerary under the normal tent map. Since the first letter
in our itinerary X is L we know that y0 must be in [0, 1

2
]. The next letter in our itinerary X is R so

we know that y0 must actually be in [1
4
, 1
2
]. We can keep repeating this process iteratively until we get

a small enough interval to where we can make a good approximation of y0. Continuing this example we get:

L 7→ [0, 1
2
]

R 7→ [1
4
, 1
2
]

L 7→ [3
8
, 1
2
]

L 7→ [ 7
16
, 1
2
]

L 7→ [15
32
, 1
2
]

L 7→ [31
64
, 1
2
]

L 7→ [ 63
128
, 1
2
]

L 7→ [127
256
, 1
2
]

L 7→ [255
512
, 1
2
]

L 7→ [ 511
1024

, 1
2
]

At this point we have a fairly good approximation and it is clear that the limiting value of y0 = 1
2
.

So h(1
4
) = 1

2
. Thus we have created the first point of our topological semi-congjugacy between T2(x) and

T (x).

2 Semi-Conjugacy using MATLAB

We know that h(1
4
) = 1

2
, thus we will continue this process for 10,000 other points in [0, 1] in order to get

a very good approximation of what h(x) looks like. First we will break up the interval [0, 1] into 10,000
evenly spaced points. Next we generate the itineraries of each of these points in T2(x). Finally, we will
look at each individual itinerary we generated and determine what point under the regular tent map is
mapped to that itinerary, using the same process we did in Example 3. We can generate the following
code that will complete all three steps at once with the final output being a graph of the semi-conjugacy
h(x) :
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Figure 1: MATLAB code and graph of h(x)
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We can now see that the semi-conjugacy created between T2(x) and the tent map, h(x), is actually a
fractal: a nowhere differentiable function that displays self-similarity.
We can play around with the MATLAB code and create more semi-conjugacies. We will create another
semi-conjugacy from T2(x) to the tent map, but now suppose we assign L to the nth point of the orbit if
T n
2 (x0) ∈ [0, 1

2
] and assign R to the nth point of the orbit if T n

2 (x0) ∈ (1
2
, 1]. After modifying the code, we

get the following semi-conjugacy graph:

Recall that T2(x) was just the tent map composed with itself once and we then created semi-conjugacies
from T2(x) to the tent map. Now lets try and create more semi-conjugacies, but this time from the tent
map composed with itself two or three times instead of just once.

We have that T ◦ T ◦ T (x) = T3(x) =



8x 0 ≤ x ≤ 1
8

2− 8x 1
8
≤ x ≤ 2

8

8x− 2 2
8
≤ x ≤ 3

8

4− 8x 3
8
≤ x ≤ 4

8

8x− 4 4
8
≤ x ≤ 5

8

6− 8x 5
8
≤ x ≤ 6

8

8x− 6 6
8
≤ x ≤ 7

8

8− 8x 7
8
≤ x ≤ 1

Using the same MATLAB code we can create two semi-conjugacies from T3(x) to the tent map:
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The first graph being the semi-conjugacy when we assign L to the nth point of the orbit if T n
3 (x0) ∈ [0, 1

4
]

and assign R to the nth point of the orbit if T n
3 (x0) ∈ (1

4
, 1]. The second being when we assign L to the

nth point of the orbit if T n
3 (x0) ∈ [0, 1

2
] and assign R to the nth point of the orbit if T n

3 (x0) ∈ (1
2
, 1].
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Now we will create two semi-conjugacies from T4(x) to the tent map. We have:

The first graph being the semi-conjugacy when we assign L to the nth point of the orbit if T n
4 (x0) ∈ [0, 1

4
]

and assign R to the nth point of the orbit if T n
4 (x0) ∈ (1

4
, 1]. The second being when we assign L to the

nth point of the orbit if T n
4 (x0) ∈ [0, 1

2
] and assign R to the nth point of the orbit if T n

4 (x0) ∈ (1
2
, 1].
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3 Conclusion

After viewing the graphs of a few topological conjugacies, it is clear why it is so difficult to find these
conjugacies between functions. Many topological conjugacies create beautiful chaotic graphs, in addition,
the homeomorphism of systems shows that the systems have the same dynamical structure. Conjugacy of
systems was popularized in the 1900’s as the study of topological dynamics developed. George Birkhoff
is considered the founder of the field, but he based much of his work on the work of Poincare, Bendixion,
Ansov and others. A still developing field that is sure to provide many useful breakthroughs in the study
of dynamical systems.
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